Cho \(a^3-3ab^2=19\) và \(b^3-3a^2b=18\). Tính \(P=a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3-3ab^2=19\Rightarrow\left(a^3-3ab^2\right)^2=361\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=361\left(1\right)\)
\(b^3-3a^2b=98\Rightarrow\left(b^3-3a^2b\right)^2=9604\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=9604\left(2\right)\)
\(\text{Công 2 vế (1) và (2) ta được :}\)
\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=9956\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=9956\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=9956\)
\(\Leftrightarrow a^2+b^2=\sqrt[3]{9956}\)
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
\(a^3-3ab^2=-2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
\(b^3-3a^2b=11\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)
\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4
(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121
Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125
=> a^2 + b^2 = 5
Thế vào 1 trong 2 cái đầu là giải ra
TA có :
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2=19^2+18^2=685\)
=> \(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=685\)
=> \(b^6+3a^2b^4+3a^4b^2+b^6=685\Rightarrow\left(a^2+b^2\right)^3=685\)
=> P = ( số hơi lẻ )