K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

<=> \(x^2-2x+1\ge-4x\)

<=> \(x^2-2x+4x+1\ge0\)

<=> \(x^2+2x+1=\left(x+1\right)^2\ge0\) ( Luôn đúng => đpcm )

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

14 tháng 4 2018

\(\left(x-1\right)^2\ge-4x\Leftrightarrow\left(x-1\right)^2+4x\ge0\)

\(\Leftrightarrow x^2-2x+1+4x\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow\left(x+1\right)^2\ge0\)(luôn đúng)

5 tháng 6 2019

Cho g(x) và h(x) thì đâu ra f(x) bạn ơi ?????

f(-1)=1+4-5=0

f(5)=25-20-5=0

Do đó: x=-1; x=5 là các nghiệm của f(x)

4 tháng 3 2022

Ta có \(f\left(-1\right)=1+4-5=0\)

Vậy x = -1 là nghiệm đa thức trên 

\(f\left(5\right)=25-20-5=0\)

Vậy x = 5 là nghiệm đa thức trên 

NV
18 tháng 3 2023

Thay \(x=-1\) vào đa thức ta được:

\(P\left(-1\right)=3.\left(-1\right)^3+4.\left(-1\right)^2+2.\left(-1\right)+1=-3+4-2+1=0\)

\(\Rightarrow x=-1\) là một trong các nghiệm của đa thức

P(-1)=3*(-1)^3+4*(-1)^2+2*(-1)+1

=-3-2+1+4

=0

=>x=-1 là nghiệm của P(x)

21 tháng 4 2017

a) 4x2+4x+2

=4x2+2x+2x+2

=2x.(2x+1)+2x+1+1

=2x.(2x+1)+(2x+1)+1

=(2x+1)2+1

Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm

b) x2+x+1

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm

Phần c để tớ nghĩ đã

mình không biết

10 tháng 5 2022

Đặt \(f\left(x\right)=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2+x-5x-5=0\)

\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)

\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)

10 tháng 5 2022

đặt f(x) = 0

\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy x = 5 và x = -1 là 2 nghiệm của f(x)