K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Xét p = 2 ; p = 3 và p > 3 (có dạng 3k + 1 và 3k + 2)

28 tháng 7 2015

thang dtv ko pit lam dau

7 tháng 9 2016

Do p nguyên tố nên:

+) Xét p = 2 ta có: p2 + 8 = 22 + 8 = 12 là hợp số (loại)

+) Xêt p = 3 ta có: p2 + 8 = 32 + 8 = 17 là nguyên tố (chọn)

+) Xét p > 3  => p = 3k + 1  hoặc  p = 3k + 2

Khi p = 3k + 1  => p2 + 8 = (3k + 1)2 + 8 = 9k2 + 3k + 1 + 8 = 9k2 + 3k + 9 = 3(3k2 + k + 3) chia hết cho 3  => p2 + 8 là hợp số (loại) 

Khi p = 3k + 2  => p2 + 8 = (3k + 2)2 + 8 = 9k2 + 6k + 4 + 8 = 9k2 + 6k + 12 = 3(3k2 + 2k + 4) chia hết cho 3  => p2 + 8 là hợp số (loại) 

=> p = 3 để p và p2 + 8 là nguyên tố 

Khi đó: p2 + 2 = 32 + 2 = 11 là nguyên tố

Vậy nếu p và p2 + 8 là nguyên tố thì p2 + 2 cũng nguyên tố.

3 tháng 10 2017

Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\) 

Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.

Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.

25 tháng 3 2020

etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o

7lkyuxrxytwtqtwyer

1 tháng 12 2017

giúp cái