K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

a)Xét ΔABE và ΔACF ta có:

\(\widehat{A}\) \(chung\)

\(\widehat{AEB}=\widehat{AFC}=90^0\)

⇒ΔABE ∼ ΔACF(g.g)

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF
b: Xét ΔHDB vuông tại D và ΔHEA vuông tại E co

góc DHB=góc EHA

=>ΔHDB đồng dạng với ΔHEA
=>HD/HE=HB/HA

=>HD*HA=HE*HB

c: góc AFH+góc AEH=90+90=180 độ

=>AFHE nội tiếp

=>góc BEF=góc BAD

15 tháng 3 2023

cảm ơn bạn

a: Xét ΔABE và ΔACF có 

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

mà AB=AC

nên AH là đường trung trực của BC

=>D là trung điểm của BC

Xét ΔABC có AF/AB=AE/AC

nên EF//BC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 9 2021

da

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abc-nhon-abac-co-2-duong-cao-ad-va-be-cat-nhau-tai-ha-cm-hea-sim-hdbb-ke-dk-perp-ac-tai-k-cm-cd2-ckcac-goi-n-la-trung.627636349016

13 tháng 4 2021

sao không thấy ạ? bài đó là bài cũ ạ

11 tháng 6 2021

a) Xét ΔABE và ΔACFcó:

ˆA chung

ˆAEB=ˆAFC=90o

⇒ΔAEB∼ΔAFC (g.g)

b) ⇒AE/AF=AB/AC (hai cạnh tương ứng tỉ lệ)

⇒AE/AB=AF/AC

Xét ΔAEFvà ΔABC có:

ˆA chung

AE/AB=AF/AC(chứng minh trên)

⇒ΔAEF∼ΔABC (c.g.c)

⇒AE/AB=EF/BC (hai cạnh tương ứng tỉ lệ)

⇒AE.BC=AB.EF⇒AE.BC=AB.EF

c) Tứ giác BFCDBFCD có: BD//CH (giả thiết)

CD//BH

nên tứ giác BFCDlà hình bình hành

 hai đường chéo cắt nhau tại trung điểm của mỗi đường, có I là trung điểm của BC, nên I là trung điểm của HD.

H,I,D thẳng hàng.

image 
9 tháng 4 2018

A B E C F H

a) Xét \(\Delta ABE,\Delta ACF\) có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

b) Xét \(\Delta BFH,\Delta CEH\) có :

\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^o\\\widehat{BHF}=\widehat{CHE}\left(\text{Đối đỉnh}\right)\end{matrix}\right.\)

=> \(\Delta BFH\sim\Delta CEH\left(g.g\right)\)

\(\Rightarrow\dfrac{CH}{BH}=\dfrac{EH}{CF}\)

\(\Rightarrow CH.CF=BH.EH\)

10 tháng 4 2018

phần b sai rồi bạn