Tìm nghiệm của hai đa thức sau
x2 - 2 ; (4x - 3 ).(5 + x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C
Phương trình 18 x 2 + 23x + 5 = 0 có a – b + c = 18 – 23 + 5 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = − 1 ; x 2 = − 5 18 . Khi đó A = 18 (x + 1) x + 5 18
Đáp án: A
Có: x2 - 3x + 2 = 0 => x2 - x - 2x + 2 = 0 => x.(x - 1) - 2.(x - 1) = 0 => (x - 1).(x - 2) = 0 => x - 1 = 0 => x = 1 hoặc x - 2 = 0 => x = 2
Vậy x = {1;2}
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
Xét \(x^2-2=0\)
\(\Rightarrow x^2=0+2\)
\(\Rightarrow x^2=2\)
\(\Rightarrow\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)là nghiệm của đa thức \(x^2-2\)
b ) Xét \(\left(4x-3\right)\left(5+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)là nghiệm của đa thức \(\left(4x-3\right)\left(5+x\right)\)
Chúc bạn học tốt !!!
+ x2 - 2
Ta có \(f\left(x\right)=x^2-2\)
Khi f (x) = 0
=> \(x^2-2=0\)
=> \(x^2=2\)
=> \(x=\pm\sqrt{2}\)
Vậy f (x) có 2 nghiệm: x1 = \(\sqrt{2}\); x2 = \(-\sqrt{2}\).
+ (4x - 3) (5 + x)
Ta có \(g\left(x\right)=\left(4x-3\right)\left(5+x\right)\)
Khi g (x) = 0
=> \(\left(4x-3\right)\left(5+x\right)=0\)
=> \(\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)=> \(\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy đa thức f (x) có 2 nghiệm: x1 = \(\frac{3}{4}\); x2 = -5.