K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

Giúp em với ạ

 

29 tháng 10 2023

(3x-5)(2x+1)-(2x-1)^2-2x(x-2)-x+10=4

=>6x^2+3x-10x-5-(4x^2-4x+1)-2x^2+4x-x+10=4

=>(6x^2-4x^2-2x^2)+(3x-10x+4x+4x-x)+(-5-1+10)=4

=>4=4

21 tháng 11 2017

ghi đề cho rõ đi bn

10 tháng 7 2020

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

20 tháng 3 2022

\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)

20 tháng 3 2022

\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{x-1}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{x-1}{2x+1}\\ =\dfrac{x+2}{\left(x+1\right)\left(2x+1\right)}\)

Đề sai r bn

20 tháng 3 2022

mình sửa r nhé

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)

Vì x(x-1) chia hết cho 2 với mọi số nguyên x 

nên P(x) luôn là số nguyên nếu x nguyên

11 tháng 7 2015

Dây là 4 số  nguyên dương liên tiếp, còn phần  kia tương tự nha

Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N 
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2) 
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N) 
Ta thấy 
t² < A = t² + 2t < t² + 2t + 1 = (t+1)² 
=> A nằm giữa 2 số chính phương liên tiếp 
=> A không phải là số chính phương (đpcm)

11 tháng 7 2015

bạn ơi, mấy bn hok giỏi ko onl ùi