tính giá trị đa thức M: M=x^3+2x^2y-5x^2+2xy+4y-8y+x15 với x+2y=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^4+4x^2y^2+3x^2y^2+3y^4+4y^2\)
\(=\left(4x^2+3y^2\right)\left(x^2+y^2\right)+4y^2\)
\(=4\left(4x^2+3y^2\right)+4y^2\)
\(=4\left(4x^2+4y^2\right)=4\cdot4\cdot4=64\)
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)
b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)
\(x^2+4y^2-5x+10y-4xy+20\)
\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)
\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)
\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được :
\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)
\(B=x^2-2xy-2x+2y+y^2\)
\(=x^2-2xy+y^2-2\left(x-y\right)\)
\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được :
\(=1-2=-1\)
a: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)
Ta có:
M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)
= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7
= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7
= 3x^2y^2 + 2y^2 + 7x^4 + 7
x^2≥0;y^2≥0⇒3x^2y^2≥0 (1)
y^2≥0⇒2y^2≥0(2)
x4≥0⇒7x4≥0 (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y
a: M=x^3+27-(27-8x^3)
=x^3+27-27+8x^3
=9x^3
=9*20^3=72000
b: \(M=x^3-\left(2y\right)^3+16y^3=x^3+8y^3\)
=(x+2y)(x^2-2xy+4y^2)
=0