- Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O, đường kính AB cắt BC tại D. Kẻ tiếp tuyến CE với (O). Gọi H là hình chiếu của E trên AB . OC cắt AE tại P , EH cắt BC tại Q . Chứng minh PQ vuông góc AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet (O) có
ΔAHB nội tiếp
AB là đường kính
Do đo: ΔAHB vuông tại H
=>AH vuông góc với BC
AB^2=BC*BH
b: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOD
Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
a: góc ADB=1/2*180=90 độ
=>AD vuông góc BC
góc AEC=góc ADC=90 độ
=>AEDC nội tiếp
b: ΔOAF cân tại O
mà OC là đường cao
nên OC là phân giác
Xét ΔOAC và ΔOFC có
OA=OF
góc AOC=góc FOC
OC chung
=>ΔOAC=ΔOFC
=>góc OFC=90 độ
=>CF là tiếp tuyến của (O)
a: Xét (O) có
BA,BE là tiếp tuyến
=>BA=BE
mà OA=OE
nên OB là trung trực của AE
=>OB vuông góc AE
=>BH*BO=BA^2
ΔABC vuông tại A có AD vuông góc BC
nên BD*BC=BA^2
=>BH*BO=BD*BC
b: BH*BO=BD/BC
=>BH/BC=BD/BO
=>góc BHD=góc BCO
=>góc DHO+góc DCO=180 độ
=>DHOC nội tiếp