Cho biểu thức sau: \(x=y^4-2\).
Chứng minh rằng biểu thức trên vô nghiệm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=1-2x^2y^2\)
Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)
Thế vào ta được
\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)
Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không
Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)
\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)
Đề sai, biểu thức A ko có m thì sao chứng minh?
\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)
Ta có \(a+1-a=1\) là số lẻ (đpcm)
\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)
\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
Δ=(2m+2)^2-4(-m-4)
=4m^2+8m+4+4m+16
=4m^2+12m+20
=4m^2+12m+9+11=(2m+3)^2+11>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
M=x1(1-x1)+x2(1-x2)
=x1+x2-x1^2-x2^2
=(x1+x2)-(x1^2+x2^2)
=(x1+x2)-(x1+x2)^2+2x1x2
=(-2m-2)-(-2m-2)^2+2(-m-4)
=-2m-2-2m-8-(4m^2-8m+4)
=-4m-10-4m^2+8m-4=-4m^2+4m-14
Xét \(\Delta'=\left(m+1\right)^2-\left(-m-4\right)=m^2+3m+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Suy ra pt có hai nghiệm pb với mọi m
Theo hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=-m-4\end{matrix}\right.\)
\(M=x_1-x_1^2+x_2-x_2^2=x_1+x_2-\left(x_1+x_2\right)^2+2x_1x_2\)
\(=-2m-2-\left(-2m-2\right)^2+2\left(-m-4\right)\)
Qua đó thấy M phụ thuộc vào m
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
liink:https://olm.vn/hoi-dap/question/675093.html
Ta có \(y^4\ge0\)với mọi giá trị của x
=> \(y^4-2\ge0-2< 0\)với mọi giá trị của x
=> \(y^4-2\)vô nghiệm (đpcm)