Cho A = \(\frac{50}{111}+\frac{50}{112}+\frac{50}{114}+\frac{50}{114}\)
Chứng tỏ 1<A<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
50/111 < 50/100
50/112 < 50/100
50/113 < 50/100
50/114 < 50/100
=> A < 200/100 => A < 2
50/111 > 50/200
50/112 > 50/200
50/113 > 50/200
50/114 > 50/200
=> A > 200/200 => A > 1
Vậy 1 < A < 2
AI THẤY OK ỦNG HỘ NHÉ
\(\frac{50}{111}>\frac{1}{4};\frac{50}{112}>\frac{1}{4};\frac{50}{113}>\frac{1}{4};\frac{50}{114}>\frac{1}{4}\)
\(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}>\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)(1)
\(\frac{50}{111}< \frac{1}{2};\frac{50}{112}< \frac{1}{2};\frac{50}{113}< \frac{1}{2};\frac{50}{114}< \frac{1}{2}\)
\(\Rightarrow A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)(2)
từ (1) và (2) \(\Rightarrow1< A< 2\)
Ta có :
\(\frac{50}{111}>\frac{50}{200}\)
\(\frac{50}{112}>\frac{50}{200}\)
\(\frac{50}{113}>\frac{50}{200}\)
\(\frac{50}{114}>\frac{50}{200}\)
\(\Rightarrow A>\frac{50}{200}+\frac{50}{200}+\frac{50}{200}+\frac{50}{200}\)hay \(A>\frac{50}{200}.4\left(1\right)\)
Mặt khác :
\(\frac{50}{111}< \frac{50}{100}\)
\(\frac{50}{112}< \frac{50}{100}\)
\(\frac{50}{113}< \frac{50}{100}\)
\(\frac{50}{114}< \frac{50}{100}\)
\(\Rightarrow A< \frac{50}{100}+\frac{50}{100}+\frac{50}{100}+\frac{50}{100}\)hay \(A< \frac{50}{100}.4\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow1< A< 2\left(đpcm\right)\)
Ta có :
\(A=\dfrac{50}{111}+\dfrac{50}{112}+\dfrac{50}{113}+\dfrac{50}{114}\)
Ta thấy :
\(\dfrac{50}{111}>\dfrac{50}{200}\)
\(\dfrac{50}{112}>\dfrac{50}{200}\)
\(\dfrac{50}{113}>\dfrac{50}{200}\)
\(\dfrac{50}{114}>\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}.4=1\) \(\left(1\right)\)
Mặt khác :
\(\dfrac{50}{111}< \dfrac{50}{100}\)
\(\dfrac{50}{112}< \dfrac{50}{100}\)
\(\dfrac{50}{113}< \dfrac{50}{100}\)
\(\dfrac{50}{114}< \dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}.4=2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow1< A< 2\rightarrowđpcm\)
A<50/100+50/100+50/100+50/100=4.50/100=2
=>A<2
A>4.50/150=4/3+1+1/3>1
=>dccm
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\Rightarrow A=B\text{(đpcm)}\)
Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 nhé !
Bài 1:
Xét vế phải :
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Đẳng thức được chứng tỏ là đúng
Bài 2 :
Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)
Chúc bạn học tốt ( -_- )
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(< \frac{1}{26}+\frac{1}{26}+\frac{1}{26}+...+\frac{1}{26}+\frac{1}{26}\)
\(=\frac{25}{26}< 1\)(sai với đề bài)