CM: m2 + n2 + 2 \(\ge\) 2(m + n).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^2+n^2+2\ge2\left(m+n\right)\\ \Leftrightarrow\left(m^2+2m+1\right)+\left(n^2+2n+1\right)\ge0\\ \Leftrightarrow\left(m+1\right)^2+\left(n+1\right)^2\ge0\forall m,n\)
Ta có: m - 1 2 ≥ 0; n - 1 2 ≥ 0
⇒ m - 1 2 + n - 1 2 ≥ 0
⇔ m 2 – 2m + 1 + n 2 – 2n + 1 ≥ 0
⇔ m 2 + n 2 + 2 ≥ 2(m + n)
Dễ thui Ta có: 2 = 2 mà đây là tổng
=> đẳng thức trên lớn hơn 2
Bừa hìhif
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: \(\left(xy+ab\right)^2+\left(bx-ay\right)^2\)
\(=x^2y^2+a^2b^2+x^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(b^2+y^2\right)\left(x^2+a^2\right)\)
Ta có M 2 ^ − N 0 ^ = 35 ° (đề bài) (1)
Lại có a // b nên M 2 ^ + N 2 ^ = 180 ° (2) (hai góc trong cùng phía)
Từ (1) và (2) ⇒ 2 M 2 ^ = 215 ° ⇒ M 2 ^ = 107.5 ° .
Từ (1) có N 1 ^ = 107.5 ° − 35 ° = 72.5 ° .
Do a // b nên : N 2 ^ = M 2 ^ = 107.5 ° (hai góc so le trong).
N 1 ^ = M 2 ^ = 72.5 ° (hai góc so le trong)
\(m^2+n^2+2\ge2\left(m+n\right)< =>m^2+n^2+2-2m-2n\ge0\)
\(< =>m^2-2m+1+n^2-2n+1\ge0\)
\(< =>\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(luôn đúng \(\forall m,n\))
dấu'=' xảy ra<=>m=n=1
vậy \(m^2+n^2+2\ge2\left(m+n\right)\)
Bổ sung: $m,n$ là hai số không âm
$m^2+n^2+2\\=(m^2+1)+(n^2+1)$
Áp dụng BĐT Cô si với các số dương
$m^2+1\ge 2\sqrt{m^2.1}=2m\\n^2+1\ge 2\sqrt{n^2.1}=2n$
Cộng các vế của BĐT
$\Rightarrow m^2+1+n^2+1\ge 2m+2n\\\Leftrightarrow m^2+n^2+2\ge 2(m+n)$
$\Rightarrow $ Dấu "=" xảy ra khi $\begin{cases}m^2=1\\n^2=1\end{cases}$
Mà $m,n$ là hai số dương
$\Rightarrow m=n=1$
Vậy BĐT được chứng minh