Cho tam giác ABC, phân giác AD. Trên tia AC lấy E sao cho AE=AB. Chứng minh: AD là đường trung trực của BE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>AB=AE và DB=DE
=>AD là trung trực của BE
a, xét tam giác ABD và tam giác AED có : AD chung
^BAD = ^EAD do AD là pg của ^BAC (gt)
AB = AE (gt)
=> tam giác ABD = tam giác AED (c-g-c)
b, tam giác ABD = tam giác AED (câu a)
=> ^ABD = ^AED (đn)
^ABD + ^DBF = 180
^AED + ^DEC = 180
=> ^DBF = ^DEC
xét tam giác FBD và tam giác CED có : BF = EC (gt)
DB = DE do tam giác ABD = tam giác AED (câu a)
=> tam giác FBD = tam giác CED (c-g-c)
c, tam giác FBD = tam giác CED (câu b)
=> ^BDF = ^EDC (đn)
B;D;C thẳng hàng => ^BDE + ^EDC = 180
=> ^BDE + ^BDF = 180
=> E;D;F thẳng hàng
d, AB = AE (gt) => A thuộc đường trung trực của BE (tc)
BD = DE (câu b) => D thuộc đường trung trực của BE (Tc)
=> AD là đường trung trực của BE
e, DF = DC do tam giác BDF = tam giác EDC (Câu b)
=> tam giác DFC cân tại D (đn)
=> ^DCF = (180 - ^FDC) : 2 (tc)
DB = DE (câu b) => tam giác DEB cân tại D (đn) => ^EBD = (180 - ^BDE) : 2 (tc)
^FDC = ^BDE (đối đỉnh)
=> ^DCF = ^EBD mà 2 góc này slt
=> BE // CF
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔABD=ΔAED
Suy ra: DB=DE
b: Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE
=>BD là đường trung trực của AE
b: Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)
\(\widehat{BEA}+\widehat{HAE}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{CAE}=\widehat{HAE}\)
hay AE là tia phân giác của góc HAC
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
a) Ta có :
AB = AE
=> ∆ABE cân tại A
Mà AD là phân giác
=> AD là trung trực ∆ABE (dpcm)
b) Gọi giao điểm AD và BE là O
Xét ∆ABD và ∆AED có :
AD chung
AB = AE (gt)
BAD = CAD (AD là phân giác)
=> ∆ABD = ∆AED (c.g.c)
=> BD = DE ( tương ứng)
Vì AD là trung trực BE (cmt)
=> AD\(\perp\)BE
Mà AD//FE
=> OD //FE ( O \(\in\)AD )
=> FEO + EOD = 180° ( trong cùng phía)
=> FEO = 180° - 90° = 90°
=> ∆BFE vuông tại E
Xét ∆BFE có :
O là trung điểm BE ( O là trung trực BE )
OD//FE (cmt)
=> D là trung điểm BF
=> BD = DF
a) Xét ▲ABD và ▲ACD có:
\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))
AB=AC (▲ABC cân tại A).
AD là cạnh chung.
=>▲ABD = ▲ACD (c-g-c)
=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)
\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD⊥BC tại D (2)
- Từ (1) và (2) suy ra: AD là đường trung trực của BC.
b) Xét ▲AIF và ▲AIE có:
\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )
AF=AE (gt)
AI là cạnh chung.
=>▲AIF = ▲AIE (c-g-c)
=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)
Mà\(\widehat{AEI}=90^0\)(BE⊥AC tại E)
=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.
c) Xét ▲ABC có:
AD là đường cao (AD⊥BC tại I)
BE là đường cao (BE⊥AC tại E)
AD cắt BE tại I (gt)
=> I là trực tâm của ▲ABC.
=>CI⊥AB mà IF⊥AB (cmt)
=>CI trùng với IF hay C,I,F thẳng hàng.
Hình tự vẽ
Chứng minh
Gọi giao điểm của AD và BE là F
Vì AD là phân giác của góc ABC => góc BAD=góc CAD
Xét tam giác BAF và tam giác CAF :
AB=AB(gt)
góc BAD=góc CAD(cmt)
ÀF chung
=> Tam giác BAF = tam giác CAF(c.g.c)
=>BF=CF( hai cạnh tương ứng) (*)
góc BFA = góc CFA ( hai góc tương ứng) (1)
mà góc BFA + góc CFA = 180 độ ( 2 góc kề bù) (2)
Từ (1) và (2) => góc BFA = góc CFA = 90 độ =>AD vuông góc với BE(**)
Từ (*) và (**) => AD là trung trực BE (ĐPCM)