Tìm tổng các hệ số của đa thức sau khi phá ngoặc:
f(x)= (3x^2-12x+8)^111*(4x^5+3x^4+2x^3+x^2-12x+1)^2222
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
2x^2-3x-5=(x+1)(2x-5) => 2x^2-3x-5 co 2 nghiem x=-1 va x=5/2
x^3+4x^2+x-6=(x-1)(x+2)(x+3) =>x^3+4x^2+x-6 co 3 nghiemx=1;x=-2 va x=-3
36x^4+12x^3-17x^2-3x+2=(2x-1)^2(3x-1)(3x+2) => 36x^4+12x^3-17x^2-3x+2 co 3 nghiem x=1/2;x=1/3 va x=-2/3
a,\(2x^2-3x-5\)
=\(2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)-\frac{49}{8}\)
=\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)
Để g(x) có nghiệm
=>\(2\left(x-\frac{3}{4}\right)^2-\frac{49}{8}\)=0
=>\(2\left(x-\frac{3}{4}\right)^2=\frac{49}{8}\)
=>\(\left(x-\frac{3}{4}\right)^2=\frac{49}{16}\)
=>x=-1 hoặc x=5/2
Vậy x=-1 hoặc x=5/2
Khi phá ngoặc của của đa thức f(x) ta sẽ được đa thức \(f\left(x\right)=a_1x^n+a_2x^{n-1}+a_3x^{n-2}+...+a_{n-1}x+a_n\)(với n là bậc của đa thức)
Ta có:\(f\left(1\right)=a_1+a_2+a_3+...+a_{n-1}+a_n\)
Mà \(f\left(1\right)=\left(3-12+8\right)^{111}\cdot\left(4+3+2+1-12+1\right)^{2222}\)\(=-1\)
Suy ra:\(a_1+a_2+a_3+...+a_{n-1}+a_n=-1\)
Vậy tổng các hệ số của đa thức sau khi phá ngoặc là -1