K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

4 tháng 8 2016

ta có A=x2-2x+2=x2-2x+1+1=(x+1)2+1

ta thấy : (x+1)2\(\ge\)0 với mọi x 

                    1>0

=> A=(x+1)2+1\(\ge\)1=> A\(\ge\)0

=> ĐPCM

A=(x+1)2+1\(\ge\)1 vơi smoij x

dấu = xảy ra khi x=-1

=> GTNN A=1 khi x=-1

=> 

4 tháng 8 2016

chị giỏi wá

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:

Do $x\geq 2$ nên:

$x-2\geq 0$

$2x-1\geq 2.2-1>0$

Do đó: $(x-2)(2x-1)\geq 0$ (đpcm)

17 tháng 7 2015

x2+x+1=x2+2.x.1/2+1/4+3/4

=(x+1/2)2+3/4

Vì (x+1/2)2\(\ge\)0 nên

(x+1/2)2+3/4>0

=>x2+x+1>0

20 tháng 8 2024

x2+x+1=x2+2.x.1/2+1/4+3/4 =(x+1/2)2+3/4 Vì (x+1/2)2 ≥ 0 nên (x+1/2)2+3/4>0 =>x2+x+1>0 

18 tháng 12 2016

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)

=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=>đpcm

18 tháng 12 2016

Ta có:

\(x^2-x+1\\ < =>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)

(ĐPCM)