\(\frac{3}{5\cdot7}\)+ \(\frac{3}{7\cdot9}\) + ......+\(\frac{3}{59\cdot61}\)
S=\(\frac{1}{2}\) + \(\frac{1}{2^2}\) +......+\(\frac{1}{2^{20}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\frac{56}{305}\)
\(=\frac{84}{305}\)
tk cho minh nhe >.<
Ta có: \(\frac{2}{3}\times\left(\frac{3}{5.7}+\frac{3}{7.9}+.....+\frac{3}{59.61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{59.61}\right):\frac{2}{3}\)
\(=\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\right):\frac{2}{3}\)
\(\Rightarrow\left(\frac{1}{5}-\frac{1}{61}\right):\frac{2}{3}=\frac{56}{305}:\frac{2}{3}=\frac{84}{305}\)
\(\frac{5}{5.7}+\frac{5}{7.9}+...+\frac{5}{59.61}\)
\(=\frac{5}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{5}{2}\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{5}{2}.\frac{56}{305}=\frac{28}{61}\)
\(=\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{59.61}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
=\(2.\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\left(\frac{36}{505}\right)\)
\(=\frac{72}{505}\)
TK nha !!
Ta có : \(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+....+\frac{4}{59.61}\)
\(=2\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+.....+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
Bài làm:
Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)
Cái còn lại tự CM
1) \(A=\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(A=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(A=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..+\frac{1}{59}-\frac{1}{61}\right)\)
tiếp theo bạn tính kết quả trong ngoặc rồi nhân với 2 là ra kết quả của phần 1
phần 2 tách 3^2 = 3.3 sau đó lấy thừa số chung là 3,tiếp theo làm như phần 1 là ra kết quả
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!
\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-.......-\frac{2}{61.63}-\frac{2}{63.65}\)
=\(-1.\left(\frac{2}{3.5}+\frac{2}{5.7}+......\frac{2}{63.65}\right)+1\)
=\(-1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{63}-\frac{1}{65}\right)+1\)
=\(-1.\left(\frac{1}{3}-\frac{1}{65}\right)+1\)
=\(-1.\frac{62}{195}+1\)
=\(\frac{-62}{195}+\frac{195}{195}\)
=\(\frac{133}{195}\)
Hok tốt nhé bn
A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9
Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên
1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10
= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10
= 1/2- 1/10
= 2/5
Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8
Vậy....
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
=>\(S=\frac{4}{9}-\frac{1}{5}\)
=>\(S=\frac{11}{45}\)
ko co de]
\(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{59.61}\)
\(=\)\(\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{59.61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=\)\(\frac{3}{2}.\frac{56}{305}\)
\(=\)\(\frac{84}{305}\)
Chúc bạn học tốt ~