Tìm số dư của phép chia:
x^2004+x^2003+x^2002+x+1 cho 1-x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)
\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)
\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)
\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)
=> không có giá trị x,y,z thỏa mãn đề
có (x+1)(x+3)(x+5)(x+7)+2004
=(x2+8x+7)(x2+8x+15)+2004
=[(x2+8x+1)+6][(x2+8x+1)+14]+2004
=(x2+8x+1)2+20(x2+8x+1)+84+2004
=(x2+8x+1)2+20(x2+8x+1)+2088
vì (x2+8x+1)2 chia hết chox2+8x+1
20(x2+8x+1) chia hết cho x2+8x+1
=>(x+1)(x+3)(x+5)(x+7)+2004 chia cho x2+8x+1 dư 2088
(x+1)(x+3)(x+5)(x+7) + 2004
= ( x2 + 8x + 7 ) ( x2 + 8x + 15 ) + 2004
đặt x2 + 8x + 1 = a
\(\Rightarrow\)( a + 6 ) ( a + 14 ) + 2004
= a2 + 20a + 84 + 2004
= a2 + 20a + 2088
Ta thấy a2 + 20a \(⋮\)x2 + 8x + 1
\(\Rightarrow\)(x+1)(x+3)(x+5)(x+7) + 2004 chia x2 + 8x + 1 dư 2088
\(\left(x-\frac{1}{2004}\right)+\left(x-\frac{2}{2003}\right)-\left(x-\frac{3}{2002}\right)=x-\frac{4}{2001}\)
\(x-\frac{1}{2004}+x-\frac{2}{2003}-x+\frac{3}{2002}-x=-\frac{4}{2001}\)
\(x+x-x-x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(0x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(\Rightarrow\) Vô lý
Vậy \(x\in\phi\)