Cho đa thức P(x) =2(x-3)2 +5
CMR đa thức đã cho không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
Ta có: g(x) = x2-x-x+3 = x2-x-x+1+2 = x(x-1)-(x-1)+2 = (x-1)2+2
Do (x-1)2 lớn hơn hoặc bằng 0 => g(x) lớn hơn hoặc bằng 2
Vậy g(x) vô nghiệm
Ta có : g(x) = x2 - x - x + 3 = x2 - 2x + 3 = x2 - 2x + 1 + 2 = (x - 1)2 + 2
Vì : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 2 \(\ge2>0\forall x\in R\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)
Vậy đa thức trên ko có nghiệm
Truong hop \(x=3\):
\(M\left(3\right)=\left(3\right)^2-4.3+3=0\Leftrightarrow x=3\) la nghiem cua da thuc \(M\left(x\right)\)(dpcm)
Truong hop \(x=-1\):
\(M\left(-1\right)=\left(-1\right)^2-4\left(-1\right)+3=9\Leftrightarrow x=-1\) khong la nghiem cua da thuc \(M\left(x\right)\)(dpcm)
Ta có \(\left(x-3\right)^2\ge0\)( lũy thừa bậc chẵn)
=> \(8.\left(x-3\right)^2\ge0\)
=>8.(x-3)2+3\(\ge3>0\)
Vậy đa thức N(x)=8.(x-3)2+3 không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Ta có : (x - 3)2 \(\ge0\forall x\in R\)
Nên : 3(x - 3)2 \(\ge0\forall x\in R\)
Suy ra : A = 3(x - 3)2 + 5 \(\ge5\forall x\in R\)
Hay : A = 3(x - 3)2 + 5 \(>0\forall x\in R\)
Vậy đa thức trên vô nghiệm
Ta có :
Xét \(p\left(x\right)=0\)
\(\Rightarrow2\left(x-3\right)^2+5=0\)
\(\Rightarrow2\left(x-3\right)^2=0-5\)
\(\Rightarrow2\left(x-3\right)^2=-5\)
Mà \(2\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-3\right)^2\ne-5\)
\(\Rightarrow2\left(x-3\right)^2+5\ne0\)
\(\Rightarrow P\left(x\right)\)không có nghiệm
Chúc bạn học tốt !!!