K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

20 tháng 1 2018

Do ∆ABC cân tại A=> góc B= góc C

Mà góc A=50°=> góc B=góc C= (180°-50°)/2=65°

20 tháng 1 2018

vì tg ABC cân tại A

    =>góc B = góc C

   * Xét tg ABC có : góc A + góc B + góc C =180 độ

                   mà  góc A =50 độ

                                       => góc B + góc C =180 độ -50 độ

                                       => góc B + góc C =130 độ

                  lại có : góc B = góc C (cmt)

                                        =>góc B = góc C=130 độ :2

                                        => góc B = góc C= 65 độ

                                        =>đpcm

23 tháng 11 2018

A B C D M

a) Xét tam giác DAB và tam giác DAC có :

ABD = ACD ( = 900 )

AD chung

AB = AC ( gt )

=> tam giác DAB = tam giác DAC ( ch - cgv )

=> đpcm

b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )

=> BD = CD ( 2 cạnh tương ứng )

=> tam giác BDC cân tại D ( đpcm )

c) Ta có :

+) AB = AC => A thuộc đường trung trực của BC (1)

+) BM = MC => M thuộc đường trung trực của BC (2)

+) BD = CD => D thuộc đường trung trực của BC (3)

Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )

23 tháng 11 2018

*Link ảnh(nếu như olm không hiện):Ảnh - by tth

Ảnh (nếu olm ko hiện)

a) Xét tam giác DAB và tam giác DAC có:

AB = AC (gt)

AD (cạnh chung - cũng là cạnh huyền)

\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)

Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)

Do đó \(\Delta DBC\) cân (tại D)

c) Bạn Trần Phương  đã làm =))

NV
21 tháng 7 2021

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)

Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\)

Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)

18 tháng 9 2023

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

28 tháng 6 2023

không có biết luôn á

 

30 tháng 6 2023

a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:

- AB = AC (vì ΔABC cân tại A)

- AH là cạnh chung

Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)

Từ đó BH = CH (hai cạnh tương ứng)

b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)

Mà AB = AC (chứng minh trên)

Suy ra AM = AB - BM = AN = AC - CN

Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A

c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

29 tháng 1 2022

- Gợi ý:

Câu 1:

a) - Sửa lại đề: Tam giác ABD=Tam giác ICE (c-g-c) do có AB=AC=CI, góc ABC=góc ACB=góc ECI, BD=CE.

b) Do tam giác ABD=Tam giác ICE nên AD=IE : 

AE+EI>AI=2AC=AB+AC

=>AE+AD>AB+AC.

Câu 2:

- Tam giác MBD=Tam giác NCE do góc MDB=góc CEN=900, BD=CE,

góc MBD=góc NCE. nên BM=CN

Câu 3:

- AB=AM+BM ; CI=CN+NI.

=>AM=NI.

=>AM+AN=AM+NI=AI=AB+AC.

-c/m MN>BC (c/m mệt lắm nên mình nói ngắn gọn).

MN cắt BC tại F =>MF>DF, NF>EF

MF+NF>DF+EF=DF+CF+CE=DF+CF+BD=BC =>MN>BC

29 tháng 1 2022

cảm ơn bạn nhiều !