tính giá trị :\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right).0\)
\(=0\)
\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)=\(\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{9999}\right).0=0\)
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)
\(=0\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow c\left(a+b\right)\left(a+b+c\right)=ab\left(-a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(ca+cb+c^2\right)+ab\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Rightarrow\left(a+b\right)\left(c+a\right)\left(b+c\right)=0\)
=> Trong 3 số a,b,c có 2 số đối nhau.Giả sử a = -b thì a9 + b9 = 0.
Tương tự giả sử b = -c hay a = -c thì b99 + c99 = 0 hay c999 + a999 = 0
Vậy biểu thức cần tính bằng 0.
A=(9/1999+99/999+999/9999).(1/5-1/4+1/20)
A=(9/1999+99/999+999/9999).(-1/20+1/20)
A=(9/1999+99/999+999/9999).0
A=0
Vì mọi số nhân vs 0 thì đều = 0 kể cả phân số
mk nhanh nhất ủng hộ nha
\(A=\left(\frac{9}{1999}+\frac{99}{999}+\frac{999}{9999}\right)\cdot0\)
A=0
lam on ai biet thi chi trong toi nay tui se cho ma ngay mai la phai nop rui
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\text{ }\)
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(Q=\left(\frac{1}{99}+\frac{12}{999}+\frac{123}{999}\right).0\)
\(Q=0\)
Q=(1/99+12/999+123/999).(1/2-1/3-1/6) =(1/99+12/999+123/999).0 Q=0