c/m: 1- 1/22-1/32-....- 1/20042> 1/2004
ai giải hộ cái dùm!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2003-2004\right)\left(2003+2004\right)+2005^2\\ =-\left(1+2\right)-\left(3+4\right)-...-\left(2003+2004\right)+2005^2\\ =-\left(1+2+3+...+2003+2004\right)+2005^2\\ =-\dfrac{\left(2004+1\right)\cdot2004}{2}+2005^2\\ =2011015\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)
\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)
Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)
\(\left(m+1\right)^2\ge4m\Leftrightarrow m^2+2m+1\ge4m\Leftrightarrow m^2-2m+1\ge0\)\(\Leftrightarrow\left(m-1\right)^2\ge0\)
Vì \(\left(m-1\right)^2\ge0\)(luôn đúng) nên pt vô số nghiêmj
Mình cũng ko bt đây là giải pt hay cm BĐT nữa nên nếu ko đúng mục đích thì bạn thông cảm
C = 1/2*(1/1 - 1/3 + 1/3 - .... - 1/23)
C= 1/2*(1- 1/23)
C = 1/2 * 22/23
C = 11/23
C=1/1*3+1/3*5+1/5*7......+1/21*23
C=1/2*(1-1/23)
C=1/2*22/23
C=11/23
tick nha
a. /x-1/ + 2x = 4
<=> x -1 + 2x = 4 (vì x lớn hơn hoặc bằng 1)
<=> 3x = 4+1
<=> 3x = 5
<=> x = 5/3