K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2021

\(P=x^2+y^2+z^2+\dfrac{20}{x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{3}+\dfrac{20}{x+y+z}\)

\(\Leftrightarrow P\ge\dfrac{\left(x+y+z\right)^2}{3}+\dfrac{9}{x+y+z}+\dfrac{9}{x+y+z}+\dfrac{2}{x+y+z}\)

\(\Leftrightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y+z\right)^2}{3}.\dfrac{9}{x+y+z}.\dfrac{9}{x+y+z}}+\dfrac{2}{3}\)

 (theo AM-GM và do \(x+y+z\le3\Rightarrow\dfrac{2}{x+y+z}\ge\dfrac{2}{3}\))

\(\Leftrightarrow P\ge\dfrac{29}{3}\)

Dấu = xảy ra khi x=y=z=1

Vậy minP\(=\dfrac{29}{3}\)

1 tháng 2 2018

đề bài như này chớ

\(\frac{x}{1+y^2}\)\(+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)

\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)

ttu vt\(\ge x+y+z-\left(\frac{xy+yz+xz}{2}\right)=3-\frac{\left(xy+xz+yz\right)}{2}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)

dau = xay ra khi x=y=z=1

1 tháng 2 2018

Ta có :

\(\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2\)

\(\Rightarrow\)\(\left(\frac{x}{1}+\frac{y}{1}+\frac{z}{1}\right)+\left(x^2+y^2+z^2\right)\ge3\)

\(\Rightarrow\)\(3+\left(x^2+y^2+z^2\right)\ge3\)

\(\Rightarrow\)\(x^2+y^2+z^2\ge0\)

Dấu "=" xảy ra khi \(x=y=z=0\)

Vậy gái trị nhỏ nhất của \(P=\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2=0\)

14 tháng 3 2017

\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi

29 tháng 7 2017

Ta có: \(\sqrt{x^2+xy+y^2}=\sqrt{x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}}=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}\)

Tương tự ta viết lại A và áp dụng BĐT Mipcopxki :

\(A=\sqrt{\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}}+\sqrt{\left(y+\frac{z}{2}\right)^2+\frac{3z^2}{4}}+\sqrt{\left(z+\frac{x}{2}\right)^2+\frac{3x^2}{4}}\)

\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(y+\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}+\sqrt{\left(z+\frac{x}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\left(x+y+z\right)}{2}\right)^2+\left(\frac{\sqrt{3}\left(x+y+z\right)}{2}\right)^2}\)

\(\ge\sqrt{\left(\frac{3\cdot3}{2}\right)^2+\left(\frac{\sqrt{3}\cdot3}{2}\right)^2}=\sqrt{27}\)

Xảy ra khi x=y=z=1

26 tháng 5 2019

Áp dụng bđt cosi ta có

\(\frac{x^3}{y^2+z}+\frac{9}{25}x\left(y^2+z\right)\ge\frac{6}{5}x^2\)

................................................................,,,,

=>\(VT\ge\frac{6}{5}\left(x^2+y^2+z^2\right)-\frac{9}{25}\left(xy^2+yz^2+zx^2+xy+yz+xz\right)\)

Ta có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=\left(x^3+xz^2\right)+\left(y^3+yx^2\right)+\left(z^3+zy^2\right)+x^2z+y^2x+z^2y\)

                                                                  \(\ge3\left(xy^2+yz^2+zx^2\right)\)

=> \(xy^2+yz^2+zx^2\le\frac{2}{3}\left(x^2+y^2+z^2\right)\)

Lại có \(xy+yz+xz\le x^2+y^2+z^2\)

Khi đó

\(VT\ge\frac{6}{5}\left(x^2+...\right)-\frac{9}{25}\left(\frac{5}{3}\left(x^2+y^2+z^2\right)\right)=\frac{3}{5}\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{5}=\frac{4}{5}\)

Vậy MinA=4/5 khi x=y=z=2/3

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1