K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Ta có: a+1/a+2=1-1/a+2

          a+2/a+3=1-1/a+3

Vì 1/a+2>1/a+3 nên a+1/a+2<a+2/a+3.

Nhớ ^-^ nha!!!

8 tháng 4 2018

Mk so sánh phần bù. Đúng đó bạn ạ. 

Chúc bn học tốt:))

25 tháng 2 2017

\(\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3.3}< \frac{1}{2.3}\)

......

\(\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha

17 tháng 9 2016

B<3\4 là đúng

20 tháng 4 2017

khó thế

21 tháng 6 2016

(a + 1)(a + 2)(a + 3) - a(a + 1)(a + 2) = (a + 1)(a + 2)[(a + 3) - a] = 3(a + 1)(a + 2)

21 tháng 6 2016

Ta có: (a+1).(a+2).(a+3) - a.(a+1).(a+2)=(a+1).(a+2).(a+3-a)=(a+1).(a+2).3

=>(a+1).(a+2).(a+3) - a.(a+1).(a+2) = 3.(a+1).(a+2)

24 tháng 4 2023

1.

a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)

  -3a . \(\left(\dfrac{-1}{3}\right)\) <  -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )

         a < b

b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)

   4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )

        a < b

2. 

a. Ta có: a < b 

3a < 3b ( nhân cả 2 vế cho 3)

3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )

b. Ta có: a < b

-2a > -2b (nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)

c. Ta có: a < b 

2a < 2b (nhân cả vế cho 2)

2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)

d. Ta có: a < b

3a < 3b (nhân cả 2 vế cho 3)

3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)

Ta có: 3 < 4

đến đây ko bắt cầu qua đc chắc đề bài sai

 

 

 

7 tháng 11 2023

Xét 3 số TN liên tiếp \(\left(n-1\right);n;\left(n+1\right)\) ta có

\(\left(n-1\right).n.\left(n+1\right)=n.\left(n^2-1\right)=n^3-n< n^3\)

\(\Rightarrow A\le\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{20.21.22}=\)

\(=\dfrac{1}{2}\left(\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{22-20}{20.21.22}\right)=\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{20.21}-\dfrac{1}{21.22}\right)=\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{21.22}\right)=\dfrac{1}{2^2}-\dfrac{1}{2.21.22}< \dfrac{1}{2^2}\)

 

12 tháng 7 2018

Có \(\frac{a+1}{a+2}=\frac{a+2-1}{a+2}=1-\frac{1}{a+2}\)

\(\frac{a+2}{a+3}=\frac{a+3-1}{a+3}=1-\frac{1}{a+3}\)

\(\Rightarrow\frac{a+1}{a+2}>\frac{a+2}{a+3}\)