Tìm nghiệm của đa thức:x^2-x+1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A\left(x\right)=x^4+x^2+6\)
Ta có :\(A\left(x\right)=0\Leftrightarrow x^4+x^2+6=0\)
\(\Rightarrow x^2+x^4=-6\)
Ta có :\(x^2\ge0;x^4\ge0\Leftrightarrow x^2+x^4\ge0\)
\(\Rightarrow A\left(x\right)\)vô nghiệm
Ta có \(x^4\ge0\)với mọi x
\(x^2\ge0\) với mọi x
\(\Rightarrow\) \(x^4+x^2+6\ge6\)với mọi x
\(\Rightarrow x^4+x^2+6>0\) với mọi x
\(\Rightarrow\) đa thức \(x^4+x^2+6\) không có nghiệm
a: \(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
hay \(x\in\left\{0;\sqrt{3};-\sqrt{3}\right\}\)
b: \(=\dfrac{x^3-3x^2+6x-8}{x-2}=\dfrac{x^2-2x-x^2+2x+4x-8}{x-2}=x^2-x+4\)
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
\(x^2+y^2-4\left(x+y\right)+16\)
\(=x^2+y^2-4x-4y+16\)
\(=x^2-2\cdot x\cdot2+2^2+y^2-2\cdot y\cdot2+2^2+8\)
\(=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}\)
Vậy GTNN của biểu thức là 8 <=> x = y = 2
Ta có:
\(\dfrac{x}{x-4}=\dfrac{...}{x^2-16}=\dfrac{...}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\dfrac{...}{\left(x-4\right)\left(x+4\right)}=\dfrac{x}{x-4}=\dfrac{x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{x^2+4x}{\left(x-4\right)\left(x+4\right)}\)
Vậy đa thức cần điền vào dấu ... là \(x^2+4x\)
\(x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow x^2-2\times x\times\frac{1}{2}+\frac{1^2}{2^2}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
cảm ơn bạn nhiều nha guiltykamikk