Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a) chứng tỏ tam giác ABC vuông tại A
b) vẽ phân giác BD, từ D vẽ DE giống góc với BC. CM DA=DE
c) ED cắt AB tại F. CM tam giác ADF=tam giác éc rồi suy ra DF <DE
d) cmt:AE//FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian tào hỏa đi là:
20 - 4 = 16(phút)
Quãng đường AB là:
120 x 16 = 1920(km)
Đáp số: 1920 km
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
a)Ta có: BC2=52=25 (1)
AB2+AC2=32+42=25 (2)
Từ (1);(2)=>BC2=AB2+AC2(=25)
=>tam giác ABC vuông tại A (PyTaGo đảo)
b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:
BD:cạnh chung
^ABD=^EBD (vì BD là phân giác của ^ABE)
=>tam giác ABD=tam giác EBD(ch-gn)
=>DA=DE (cặp cạnh t.ứ)
b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)
Mà DA=DE(cmt)
=>DF>DE
Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:
DA=DE(cmt)
^ADF=^EDC (2 góc đối đỉnh)
=>tam giác ADF=tam giác EDC (cgv-gnk)
=>DF=DC (cặp cạnh t.ứ)
DF ko bằng DE bn nhé!
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE