K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

ta có :

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(............................\)

\(\frac{1}{20^2}=\frac{1}{20.20}< \frac{1}{19.20}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{19.20}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A< 1-\frac{1}{20}\)

\(\Rightarrow A< \frac{19}{20}\) ( 1 )

mà \(\frac{19}{20}< 1\) ( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow A< 1\)

\(\Rightarrow\text{Đ}PCM\)

26 tháng 4 2017

Sorry bạn nha , mình bấm nhầm nút

\(A=\frac{5}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A< \frac{5}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{100}< \frac{5}{4}+\frac{1}{2}=\frac{7}{4}\)

\(\Rightarrow\)\(A< \frac{7}{4}\)

Vậy , \(\frac{5}{4}< A< \frac{7}{4}\left(ĐPCM\right)\)

26 tháng 4 2017

BÀI KHÓ CỦA TRƯỜNG MÌNH ĐÓ THI HK2

GIÚP MÌNH NHÉ!!!!!!THANKS!!!!!!

8 tháng 6 2017

đề cần chứng minh nhỏ hơn 1 hay 11

nếu 1 thì

\(\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{100^2}\)

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.......+\frac{1}{99\cdot100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrowđcm\)

nếu nhỏ hơn 11 thì làm như thế thêm câu

vì đẳng thức trên <1<11

=>đcm

9 tháng 6 2017

chỉ <1 thôi 

4 tháng 7 2017

ta có:

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{9}< 1\)

vậy B < 1

4 tháng 7 2017

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(A=1-\frac{1}{8}< 1\)

\(B< A< 1\left(đpcm\right)\)

23 tháng 4 2017

Gọi biểu thức phân số đó là A

Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

Ta có công thức :                 \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên ta có 

\(A< 1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1.\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\)

\(A< \frac{99}{100}< 1\Rightarrow A< 1\Rightarrow dpcm\)

ủng hộ nha

23 tháng 4 2017

ta có \(x^2=x.x\le\left(x-1\right)x\)\(\Rightarrow\frac{1}{x^2}< \frac{1}{\left(x-1\right)x}\)\(\frac{1}{\left(x-1\right)x}=\frac{1}{x-1}-\frac{1}{x}\)Vậy ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)=1-\(\frac{1}{100}\le1\)

vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

29 tháng 4 2018

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

=> A < 1 - \(\frac{1}{99}\)= 98/99 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)< 1

29 tháng 4 2018

Đặt  \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)

Ta có :    \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{99^2}< \frac{1}{98.99}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow A< 1-\frac{1}{99}\)

\(\Rightarrow A< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)