bài 1 - Tìm số tự nhiên x : ( x+3)+(x+6)+(x+9)+(x+12)+.......+(x+93) = 1550
bài 2 - Cho A = 22+23+...+299
Cho B = 2100 - 5
hãy so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: xy=-2
=>\(x\cdot y=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)
=>\(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)
b: \(\left(x-1\right)\left(y+2\right)=-3\)
=>\(\left(x-1\right)\cdot\left(y+2\right)=1\cdot\left(-3\right)=\left(-3\right)\cdot1=-1\cdot3=3\cdot\left(-1\right)\)
=>\(\left(x-1;y+2\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-5\right);\left(-2;-1\right);\left(0;1\right);\left(4;-3\right)\right\}\)
Bài 3:
a: \(x\left(x+9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+9=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b: \(\left(x-5\right)^2=9\)
=>\(\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3+5=8\\x=-3+5=2\end{matrix}\right.\)
c: \(\left(7-x\right)^2=-64\)
mà \(\left(7-x\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
Bài 2:
a: \(\left(-31\right)\cdot x=-93\)
=>\(31\cdot x=93\)
=>\(x=\dfrac{93}{31}=3\)
b: \(\left(-4\right)\cdot x=-20\)
=>\(4\cdot x=20\)
=>\(x=\dfrac{20}{4}=5\)
c: \(5x+1=-4\)
=>\(5x=-4-1=-5\)
=>\(x=-\dfrac{5}{5}=-1\)
d: \(-12x+1=-4\)
=>\(-12x=-4-1=-5\)
=>\(12x=5\)
=>\(x=\dfrac{5}{12}\)
2,
a,Vì (2x+1) (3y-2)=12
\(\Rightarrow\left(2x+1;3y-2\right)\inƯ\left(12\right)=\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Lập bảng tự tính tiếp nhé............
Vậy ta lập được các cặp (x;y)là :(Tự tìm)
b,Làm tương tự a.
Nhớ nhấn đúng nha!
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
Bài 1:(x+x+x+x+.......+x)+(3+6+9+....+93)=1550
31x+1488=1550
31x=1550-1488
31x=62
x=62:31
x=2