Cho phương trình: \(x^2\) – 3x – 4 = 0
Trong các số - 1; 1; -4; 4, số nào là nghiệm của phương trình?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: \(x^2\) – 3x – 4 = 0
Trong các số - 1; 1; -4; 4, số nào là nghiệm của phương trình?
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
a: Khi m=4 thì (1) sẽ là:
x^2-6x-7=0
=>x=7 hoặc x=-1
b: Sửa đề: 2x1+3x2=-11
x1+x2=2m-2
=>2x1+3x2=-11 và 2x1+2x2=4m-4
=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5
x1*x2=-2m+1
=>-24m^2-20m-42m-35+2m-1=0
=>-24m^2-60m-34=0
=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)
3x+4=x-2
=>3x-x=-2-4
=>2x=-6
=>x=-3
2x=6 nên x=3
3x=9 nên x=3
Vậy: Các phương trình 2x=6; x=3; 3x-9 là các phương trình tương đương
c: =>2x+4>=2x+2-3
=>4>=-1(luôn đúng)
a: 5x+10>3x+3
=>2x>-7
=>x>-7/2
Thay x = -1 vào vế trái của phương trình, ta có:
\(\left(-1\right)^2\) – 3(-1) – 4 = 1 + 3 – 4 = 0
Vậy x = -1 là một nghiệm của phương trình
Tương tự: x = 4 cũng là nghiệm của phương trình
x = 1; x = -4 không phải là nghiệm của phương trình.
\(x^2-3x-4=0\)
\(x^2-4x+x-4=0\)
\(x\left(x-4\right)+\left(x-4\right)=0\)
\(\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)