K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Bậc của A(x)+B(x) là 3

6 tháng 4 2018

Bậc của A(x) là 3

B(x)=\(6x^4+x^2-6x^4+5x+4=6x^4-6x^6+x^2+5x+4\)\(=x^2+5x+4\)

Bậc của B(x) là 2

3 tháng 6 2018

a) M =  x 2  + 3x + 3.          b) M = 3 x 2  + x.

`a,`

`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`

`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`

`F(x)=6x^4+6x^3-5x-11`

`b,`

`K(x)=F(x)+G(x)`

`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`

`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`

`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`

`K(x)=12x^4+12x^3-x^2-10x-38`

`c,`

`H(x)=F(x)-G(x)`

`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`

`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`

`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`

`H(x)=x^2+16`

Đặt `x^2+16=0`

Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)

`->` Đa thức `H(x)` vô nghiệm.

16 tháng 4 2023

Mình cần gấp lắm r, giúp mình với

 

3 tháng 5 2023

\(a,N\left(x\right)=x^2+3x^4-2x-x^2+2x^3=3x^4+2x^3+\left(x^2-x^2\right)-2x\\ =3x^4+2x^3-2x\\ P\left(x\right)=-8+5x-6x^3-4x+6=-6x^3+\left(5x-4x\right)+\left(-8+6\right)\\ =-6x^3+x-2\)

Bậc của N(x) là 4

Bậc của P(x) là 3

\(b,P\left(x\right)+N\left(x\right)=3x^4+2x^3-2x-6x^3+x-2\\ =3x^4+\left(2x^3-6x^3\right)+\left(-2x+x\right)-2\\ =3x^4-4x^3-x-2\)

\(c,B\left(x\right)=-2x^2\left(x^3-2x+5x^2-1\right)\\ =\left(-2x^2\right).x^3+\left(-2x^2\right).\left(-2x\right)+\left(-2x^2\right).5x^2+\left(-2x^2\right).\left(-1\right)\\ =-2x^5+4x^3-10x^4+2x^2\\ =-2x^5-10x^4+4x^3+2x^2\)

14 tháng 8 2023

`#Namnam041005`

`a)`

`A(x) =`\(x^5+ x^3- 4x - x^5 + 3x - x^2 + 7\)

`= (x^5 - x^5) + x^3 - x^2 + (-4x + 3x) + 7`

`= x^3 - x^2 - x + 7`

`B(x) = `\(3x^2 - x^5 + 5x - 2x^2 - 9\)

`= (3x^2 - 2x^2) - x^5 + 5x - 9`

`= -x^5 + x^2 + 5x - 9`

`b)`

`A(x)``= x^3 - x^2 - x + 7`

Bậc của đa thức: `3`

Hệ số cao nhất: `1`

Hệ số tự do: `7`

`c)`

`A(x) + B(x) = x^3 - x^2 - x + 7 -x^5 + x^2 + 5x - 9`

`= -x^5 + x^3 + (-x^2 + x^2) + (-x+5x) + (7-9)`

`= -x^5 + x^3 + 4x - 2`

`A(x) - B(x) = x^3 - x^2 - x + 7 - (-x^5 + x^2 + 5x - 9)`

`= x^3 - x^2 - x + 7 +x^5 - x^2 - 5x + 9`

`= x^5 + x^3 + (-x^2 - x^2) + (-x-5x) + (7+9)`

`= x^5 + x^3 - 2x^2 - 6x + 16`

___

`A(x) + B(x) = -x^5 + x^3 + 4x - 2=0`

Bạn xem lại đề

`d)`

`H(x) - B(x) = x^3 + x^2 - x + 1`

`=> H(x) = (x^3 + x^2 - x + 1) + B(x)`

`=> H(x) = x^3 + x^2 - x + 1 -x^5 + x^2 + 5x - 9`

`= -x^5 + x^3 + (x^2 + x^2) + (-x+5x) + (1 - 9)`

`= -x^5 + x^3 + 2x^2 + 4x - 8`

a: A(x)=x^5-x^5+x^3-x^2-4x+3x+7

=x^3-x^2-x+7

B(x)=-x^5+3x^2-2x^2+5x-9

=-x^5+x^2+5x-9

b: Bậc: 3

Hệ số cao nhất: 1

hệ số tự do: 7

c: A(x)+B(x)

=x^3-x^2-x+7-x^5+x^2+5x-9

=-x^5+x^3+4x-2

A(x)-B(x)

=x^3-x^2-x+7+x^5-x^2-5x+9

=x^5+x^3-2x^2-6x+16

d: H(x)=x^3+x^2-x+1+B(x)

=x^3+x^2-x+1-x^5+x^2+5x-9

=-x^5+x^3+2x^2+4x-8

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x^3+3x^2x+6C(x)=x3+3x2−x+6

D(x)=x^32x^2+2x6D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+342+6=202+6=24C(2)=8+3⋅4−2+6=20−2+6=24

d. C(x)+D(x)=x2+x

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

31 tháng 1 2019

a) Đa thức thương  x 2  – 6x + 9.

b) Đa thức thương 2 x 2  – 5.

c) Đa thức thương  x 2  + 4x + 3 và đa thức dư -12.

d) Đa thức x + 5 và đa thức dư x – 4.

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a.

\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)

\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)

b.

$C(x)=4x-1=0$

$\Rightarrow x=\frac{1}{4}$

Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$

c.

\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)

\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)

\(=4x^3-6x^2-6x+3\)

2 tháng 3 2022

A = \(4x^2-3x+7x^2+2x-5\)

\(11x^2-3x+2x-5\)

\(11x^2-x-5\)

B = \(3x+7y-6x-8+y-2\)

\(3x+7y-6x-10+y\)

\(- 3x+7y-10+y\)

\(3x+8y-10\)

C =  chịu

D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)

\(6x^4-3x^2+x^2-4x;12-x+2\\ \)

\(6x^4-3x^2+x^2-4x+14-x\)

\(6x^4-2x^2-4x+14-x\)

\(6x^4-2x^2-5x+14\)