Trên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB. Tia phân giác của góc xOy cắt AB ở C. CMR : C là trung điểm của AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAOCΔAOC và ΔBOCΔBOC ta có :
OA=OB(gt)OA=OB(gt)
ˆAOC=ˆBOCAOC^=BOC^
OCOC là cạnh chung
Vậy ΔAOC=ΔBOC(c−g−c)ΔAOC=ΔBOC(c−g−c)
⇒AC=BC⇒AC=BC
Vậy C là trung điểm của AB
Câu b đề sai. Đề nghị sửa lại.
Xét ΔAOCΔAOC và ΔBOCΔBOC ta có :
OA=OB(gt)OA=OB(gt)
AOCˆ=BOCˆAOC^=BOC^
OCOC là cạnh chung
Vậy ΔAOC=ΔBOC(c−g−c)ΔAOC=ΔBOC(c−g−c)
⇒AC=BC⇒AC=BC
Vậy C là trung điểm của AB
I don't now
or no I don't
..................
sorry
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>AC=BC
=>C là trung điểm của AB
Ta có: CA=CB
=>C nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>CO\(\perp\)AB
b: Xét ΔOAC và ΔMBC có
CO=CM
\(\widehat{OCA}=\widehat{MCB}=90^0\)
CA=CB
Do đó: ΔOAC=ΔMBC
=>\(\widehat{OAC}=\widehat{MBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên OA//BM
Xét ΔCBO vuông tại C và ΔCAM vuông tại C có
CB=CA
CO=CM
Do đó: ΔCBO=ΔCAM
=>\(\widehat{CBO}=\widehat{CAM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BO//AM
Xét tam giác OAC và tam giác OAB
OA = OB
OC chung
Góc AOC = góc OAB
=> Tam giác OAC = tam giác OAB
=> AC = AB
=> C là trung điểm của AB.
có OA=OB
suy ra tam giác AOB cân tại O
xét tam giác OAC và tam giác OBC có
OA=OB
AOC=BOC
OC chung
suy ra tam giác AOC=tam giác BOC
suy ra CA=BC(tương ứng)
mà C nằm giữa A,B
suy ra C là trung điểm của AB