So sánh 1/2 + 1/3 + 1/4 + ... + 1/18 + 1/19 + 1/20 và 19/20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{20^{19}+1}{20^{20}+1}< \dfrac{20^{19}+1+19}{20^{20}+1+19}=\dfrac{20^{19}+20}{20^{20}+20}\)
\(B< \dfrac{20.\left(20^{18}+1\right)}{20.\left(20^{19}+1\right)}\)
\(B< \dfrac{20^{18}+1}{20^{19}+1}\)
\(B< A\)
Ta có :
\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 19 số hạng )
\(A>\frac{19}{20}\)
#)Giải :
\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)
\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)
\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)
\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)
\(\Rightarrow A=B\)
#~Will~be~Pens~#
A>2018 +1+19/2019 +1+19
A>2018+20/2019+20
A>20(2017+1)/20(2018+1)
A>2017+1/2018+1
=>A>B
Chúc bạn học tốt
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng)
\(=10.\frac{1}{20}=\frac{1}{2}\).
Vậy \(S>\frac{1}{2}\).
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)
Vậy ................
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có :
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên :
\(A>19.\frac{1}{20}=\frac{19}{20}\)
Vậy \(A>\frac{19}{20}\)
Chúc bạn học tốt ~