Cho a< 0 .Tìm GTNN của \(P=a^2+4a+15+\frac{36a+81}{a^2}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CD
0
VT
0
T
28 tháng 5 2018
\(P=\left(a^2+4a+12\right)+\left(\dfrac{36a+81}{a^2}+3\right)\)
\(=\left(a+1\right)\left(a+3\right)+\dfrac{3\left(a+9\right)\left(a+3\right)}{a^2}+9\)
\(=\left(a+3\right)\left(\left(a+1\right)+\dfrac{3\left(a+9\right)}{a^2}\right)+9\)
\(=\left(a+3\right)^2\left(a^2-2a+9\right)+9\ge9\)
\("="\Leftrightarrow a=-3\)
NV
Nguyễn Việt Lâm
Giáo viên
16 tháng 10 2019
Do \(0< a< 1\Rightarrow b>0\)
\(A=2a+\frac{b}{4a}+b^2=\frac{3a}{2}+\frac{a}{2}+\frac{b}{4a}+b^2\ge\frac{3a}{2}+3\sqrt[3]{\frac{ab^3}{8a}}=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(a=b=\frac{1}{2}\)
L
0