tim x thuộc N
\((2x-15)^3=\left(2x-15\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-15\right)^3=\left(2x-15\right)^5\\ \Rightarrow\left(2x-15\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}2x-15=-1\\2x-15=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
a) Đặt 2 x - 15 = t
TA có :
\(t^5=t^3\) => \(t^5-t^3=0\Leftrightarrow t^3\left(t^2-1\right)=0\)
=> t^3 = 0 hoặc t^2 - 1 = 0
=> t =0 hoặc t^2 = 1
=> t = 0 hoặc t = 1 hoặc t = -1
(+) t = 0 => 2x - 15 = 0 => x = 15/2
(+) 2x- 15 = 1 => 2x = 16 => x = 8
(+) 2x- 1 5 = -1 => 2x = 14 => x = 7
b) x^2 < 5
=> x < \(\sqrt{5}\approx2,2\)
Vì x thuộc N => x = { 0;1;2)
a) (2x-15)5 = (2x - 15)3
=> 2x - 15 = 1; 2x - 15 = - 1 ; 2x - 15 = 0
TH1: 2x - 15 = 1
=> 2x = 15 + 1= 16 (chọn vì là STN)
x = 16 : 2 = 8
TH2: 2x - 15 = - 1
2x = -1 + 15 = 14
=> x = 14 : 2 = 7 (chọn vì là STN)
TH2: 2x - 15 = 0
2x = 0 + 15 = 15
=> x = 15: 2 = 7,5 (loai vì là số thập phân)
=> x = 7 ; hoặc x = 8
a) \(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
b) \(5x-2x^2+2x^2-2x=15\)
\(3x=15\)
\(x=5\)
\(VT=\frac{x\left(x+1\right)}{x.x}=1+\frac{1}{x}=1+\frac{1}{15}=VP\Rightarrow x=15\)
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
\(P=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3+x\right)\left(2x+3-x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\cdot5\left(x+1\right)}-\dfrac{3\left(x+1\right)\left(x+3\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{5\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{\left(x+5\right)}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{5x^2+30x+45+x^2+10x+25-x^2-2x-1}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{5x^2+38x+69}{\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{5x^2+38x+69}{x^2+6x+5}\)
Để P là số nguyên thì \(5x^2+30x+25+8x+34⋮x^2+6x+5\)
=>\(8x+34⋮x^2+6x+5\)
=>\(\left\{{}\begin{matrix}8x+34⋮x+1\\8x+34⋮x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x+8+26⋮x+1\\8x+40-6⋮x+5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+1\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\\x+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\end{matrix}\right.\)
=>\(x\in\left\{-2;1\right\}\)
Ta có :
\(\left(2x-15\right)^3=\left(2x-15\right)^5\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3=\left(2x-15\right)^3.\left(2x-15\right)^2\)
\(\Leftrightarrow\)\(\left(2x-15\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{16}{2}\\x=\frac{14}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy \(x=7\) hoặc \(x=8\)
Chúc bạn học tốt ~