K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

Lần lượt áp dụng bất đẳng thức cô-si ta có: \(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}.\)
Suy ra: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz.\)
Dấu bằng xảy ra khi x = y = z.

29 tháng 10 2018

(x + y)(y + z)(x + z) = 8xyz

⇒ (xy + xz + y2 + yz)(x + z) - 8xyz = 0

⇒ x2y + xyz + x2z + xz2 + y2x + y2z + xyz + yz2 - 8xyz = 0

⇒ x2y - 2xyz + yz2 + xy2 - 2xyz + xz2 + x2z - 2xyz + y2z = 0

⇒ y(x - z)2 + x(y - z)2 + z(x - y)2 = 0

mà x, y, z > 0 (gt)

\(\left\{{}\begin{matrix}\left(x-z\right)^2=0\\\left(y-z\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-z=0\\y-z=0\\x-y=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=z\\y=z\\x=y\end{matrix}\right.\)

⇒ x = y = z

28 tháng 9 2017

áp dụng bđt cosi cho 2 số dương, ta có:
\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu "=" xảy ra khi \(x=y;y=z;x=z\Rightarrow x=y=z\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\left(đpcm\right)\)

28 tháng 9 2017

ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{yz}.2\sqrt{xz}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Ta thấy dấu = xảy ra khi:

\(x=y;y=z;x=z\Rightarrow x=y=z\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Rightarrow x=y=z\left(đpcm\right)\)

8 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

(y + z - x)/x = (z + x - y)/y = (x + y - z)/z = 1

--> y + z - x = x; z + x - y = y; x + y - z = z

--> y + z = 2x; z + x = 2y; x + y = 2z

Ta có: 

B = (x + y)/y.(y + z)/z.(z + x)/x

= 2z/y.2x/z.2y/x = 8

2 tháng 7 2021

Áp dụng bất đẳng thức Co-si cho hai số không âm ta có: 

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)

Dấu "=" <=> x = y = z. (đpcm)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

29 tháng 6 2015

Áp dụng BĐT cô-si cho 2 số dương ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
 

19 tháng 9 2019

Áp dụng BĐT Cauchy cho 2 số không âm, ta được:

\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)

\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)

\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:
$x^3+y^3+z^3=x+y+z+2020$

$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$

$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$

Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$

$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$

Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.

1 tháng 2 2021

Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)

\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Áp dụng BĐT Svac-xơ cho 3 số dương có :

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$