K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)

\(\Rightarrow\frac{1}{6}.\frac{2x}{5}=\frac{1}{6}.\frac{3y}{10}=\frac{1}{6}.\frac{z}{12}\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{72}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\) 

Bạn xem lại đề bài nhé !!! 

14 tháng 4 2018

Ta có : 

\(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)

\(\Leftrightarrow\)\(\frac{2x}{5}.\frac{1}{6}=\frac{3y}{10}.\frac{1}{6}=\frac{z}{12}.\frac{1}{6}\)

\(\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}\)

Và \(x+y+z=109\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{72}=\frac{x+y+z}{15+20+72}=\frac{109}{107}\)

Do đó : 

\(\frac{x}{15}=\frac{109}{107}\)\(\Rightarrow\)\(x=\frac{109}{107}.15=\frac{1635}{107}\)

\(\frac{y}{20}=\frac{109}{107}\)\(\Rightarrow\)\(y=\frac{109}{107}.20=\frac{2180}{107}\)

\(\frac{z}{72}=\frac{109}{107}\)\(\Rightarrow\)\(z=\frac{109}{107}.72=\frac{7848}{107}\)

Vậy \(x=\frac{1635}{107}\)\(;\)\(y=\frac{2180}{107}\) và \(z=\frac{7848}{107}\)

Chúc bạn học tốt ~ 

27 tháng 6 2018

a) \(2x=3y\Rightarrow x=\frac{3}{2}y\) hay \(y=\frac{2}{3}x\)

Thay \(x=\frac{3}{2}y\)vào, tA được:

\(3.\left(\frac{3}{2}y\right)+5y=19\)

\(\Leftrightarrow\frac{9}{2}y+5y=19\)

\(\Leftrightarrow y.\left(\frac{9}{2}+5\right)=19\)

\(\Leftrightarrow y.\frac{19}{2}=19\)

\(\Rightarrow y=19:\frac{19}{2}=2\)

\(\Rightarrow x=\frac{3}{2}.2=3\)

Vậy \(\hept{\begin{cases}x=3\\y=2\end{cases}.}\)

b) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)

Áp dụng công thúc dãy tỉ số bằng nhau ta được:

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)

\(\Rightarrow\hept{\begin{cases}x=5.3=15\\y=5.5=25\\z=5.6=30\end{cases}}\)

Vậy \(\hept{\begin{cases}x=15\\y=25\\z=30\end{cases}.}\)

27 tháng 6 2018

ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{3x}{9}=\frac{5y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{9}=\frac{5y}{10}=\frac{3x+5y}{10+9}=\frac{19}{19}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=1\\\frac{5y}{10}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(x=3;y=2\)

Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)

\(\Rightarrow\frac{x}{3}=5\Rightarrow x=15\)

    \(\frac{y}{5}=5\Rightarrow y=25\)

    \(\frac{z}{6}=5\Rightarrow z=30\)

Vậy \(x=15;y=25;z=30\)

19 tháng 9 2015

minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z

+) 10x=15y=21z   ( Quy dong)

+)10x/210 = 15y/210 = 21z/210       ( BC)

+) x/21 = y/14 = z/10  ( Rut gon)

+) 3x/63 = 7y/98 =  5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2

+ x/21 = 2 => ............  phan nay minh chua xong neu xong thi minh pm not cho

6 tháng 8 2016

2x=3y,5y=7z và 3x-7y+5z=30

22 tháng 8 2016

Ta có : \(3x=5y\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\) và \(y-x=10\)

Áp dụng tính chát của dãy tỉ số bằng nhau , ta có :

   \(\frac{x}{5}=\frac{y}{3}=\frac{y-x}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow\frac{x}{5}=-5\Rightarrow x=-25\)

\(\Rightarrow\frac{y}{3}=-5\Rightarrow y=-15\)

Vậy \(x=-25;y=-10\)

b ) Ta có : \(2x=3y=5z\)

   + ) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\left(1\right)\)

   + ) \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\left(2\right)\)

Từ ( 1 ) ( 2 ) \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\)

                    \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15-10+6}=\frac{38}{11}\)

\(\Rightarrow\frac{x}{15}=\frac{38}{11}\Rightarrow x=\frac{570}{11}\)

\(\Rightarrow\frac{y}{10}=\frac{38}{11}\Rightarrow y=\frac{380}{11}\)

\(\Rightarrow\frac{z}{6}=\frac{38}{11}\Rightarrow z=\frac{228}{11}\)

Vậy ....................

AH
Akai Haruma
Giáo viên
1 tháng 9 2020

Lời giải:
Đặt $\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}=t$

$\Rightarrow x=\frac{5}{2}t; y=\frac{10}{3}t; z=12t$

Khi đó:

$x+y+z=109$

$\Leftrightarrow \frac{5}{2}t+\frac{10}{3}t+12t=109$

$\Leftrightarrow \frac{107}{6}t=109\Rightarrow t=\frac{654}{107}$

$\Rightarrow x=\frac{5}{2}t=\frac{1635}{107}; y=\frac{10}{3}t=\frac{2180}{107}; z=12t=\frac{7848}{107}$

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)