Tìm \(x,y\varepsilon Z\)biết 2x+3y+4xy=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-2x+3y=13\)
\(x\left(y-2\right)+3y-6=13-6\)
\(x\left(y-2\right)+3\left(y-2\right)=7\)
\(\left(y-2\right)\left(x+3\right)=7\)
\(\Rightarrow\left(y-2\right);\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
Lập bảng giá trị
x+3 | 1 | -1 | 7 | -7 |
y-2 | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 9 | -5 | 3 | 1 |
Vậy có các cặp số (x;y) là: (-2;9);(-4;-5);(4;3);(-10;1)
Tham khảo nhé~
\(xy-2x+3y=13\Leftrightarrow x\left(y-2\right)+3y-6=7\)
\(\Leftrightarrow x\left(y-2\right)+3\left(y-2\right)=7\Leftrightarrow\left(y-2\right)\left(x+3\right)=7\)
Tự làm tiếp nha !
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0\); \(\left(x+1\right)^2\ge0\); \(\left(y-1\right)^2\ge0\)\(\forall x,y\)
\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
Vậy \(x=-1\)và \(y=1\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)=-1\\ \Leftrightarrow\left(x-2y\right)^2-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1=\left(-1\right)\cdot1\)
\(TH_1:\left\{{}\begin{matrix}x-3y+2=1\\x-y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-1\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x-3y+2=-1\\x-y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y=-3\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\in\left\{\left(2;1\right);\left(6;3\right)\right\}\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)-\left(y^2-4y+4\right)+1=0\\ \Leftrightarrow\left(x-2y^2\right)-\left(y-2\right)^2=-1\\ \Leftrightarrow\left(x-2y-y+2\right)\left(x-2y+y-2\right)=-1\\ \Leftrightarrow\left(x-3y+2\right)\left(x-y-2\right)=-1\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-y-2\in Z\\x-3y+2\in Z\\x-y-2,x-3y+2\inƯ\left(-1\right)=\left\{-1;1\right\}\end{matrix}\right.\)
Ta có bảng:
\(x-3y+2\) | \(-1\) | \(1\) |
\(x-y-2\) | \(1\) | \(-1\) |
\(x\) | 6 | 2 |
\(y\) | 3 | 1 |