K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Trả lời

\(Để\)\(A=\frac{2n+5}{2n-1}\)nhận giá trị nguyên thì

\(\Leftrightarrow2n+5⋮2n-1\)

\(\Rightarrow\left(2n-1\right)+6⋮2n-1\)

\(\Rightarrow6⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Vì 2n-1 là số lẻ \(\Rightarrow2n-1\in\left\{\pm1;\pm3\right\}\)

Ta có bảng

2n-1-1-313
2n0-224
n0-112
Đối chiếuChọnChonChọnChọn

Đối chiếu điều kiện \(n\in z\)

Vậy \(n\in\left\{0;-1;1;2\right\}\)

11 tháng 2 2018

a) Ta có: \(A=\frac{2n+1}{2n-1}=\frac{2n-1+2}{2n-1}=\frac{2n-1}{2n-1}+\frac{2}{2n-1}=1+\frac{2}{2n-1}\)

Để A là một phân số \(\Leftrightarrow2n-1\ne0\Leftrightarrow x\ne\frac{1}{2}\)

b) Để A nhận giá trị nguyên \(\Leftrightarrow2⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nếu 2n - 1 = 1 => n = 1

Nếu 2n - 1 = -1 => n = 0

Nếu 2n - 1= 2 => n = 3/2

Nếu 2n - 1 = -2 => n = -1/2

Vì \(n\in Z\Rightarrow n=\left\{0;1\right\}\) thì A đạt giá trị nguyên

11 tháng 2 2018

\(\text{a) }ĐKXĐ:2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)

Phản chứng:

\(A=\frac{2n+1}{2n-1}=1+\frac{2}{2n-1}\)(Vậy chúng ta phải chứng minh A là số nguyên)

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1 =1 => n=1 => A= 3 ( nên a) ko đúng

b)từ ý a) ta có:

Để A thuộc Z => \(\frac{2}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\mp2\right\}\)

+ Với 2n-1=-2=> n= -1/2( loại)

+Với 2n-1=-1 => n= 0 ( chọn)

+ Với 2n-1=1=> n= 1 ( chọn)   

+ Với 2n-1 =2 => n=3/2( loại)

vậy......

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
26 tháng 2 2017

Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3

<=> 4n + 1 chai hết cho 4n + 6

=> 4n + 6 - 5 chia hết 4n + 6

=>5 chia hết 4n + 6

=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}

Ta có bảng

4n + 6-5-115
4n-11-7-511
n  -1 
27 tháng 3 2020

a

Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

b

A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)

\(\Rightarrow\frac{5}{2n-1}\inℤ\)

\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)

c

\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)

9 tháng 2 2018

Ta có:     \(A=\frac{2n-1}{n+3}=2-\frac{7}{n+3}\)

Để  A  nguyên  thì   \(7\)\(⋮\)\(n+3\)

\(\Rightarrow\)\(n+3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)\(n\)\(=\left\{-10;-4;-2;4\right\}\)

9 tháng 2 2018

\(A=\frac{2n-1}{n+3}\) có giá trị nguyên

\(\Leftrightarrow2n-1⋮n+3\)

\(\Rightarrow\left(2n+6\right)-6-1⋮n+3\)

\(\Rightarrow2\left(n+3\right)-7⋮n+3\)

           có \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow-7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(-7\right)\)

        \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow n+3\in\left\{-1;-7;1;7\right\}\)

\(\Rightarrow n\in\left\{-4;-10;-2;4\right\}\)

3 tháng 3 2018

Để A nguyên dương

=> n + 1 \(⋮\)2n - 1

Tiếp theo dễ rồi nhé :)

3 tháng 3 2018
Để A thuộc N* <=> n+1/2n-1 thuộc N* Xét 2A= 2n+2/2n-1 Ta cm 2n+2/2n-1 thuộc N* <=> 2n-1+3/2n-1 thuộc N* <=> 1+ 3/ 2n-1 thuộc N* <=> 2n-1 thuộc Ư(3) Ư(3) = { 1 -1 3 -3 } => 2n-1 thuộc {1 -1 3 - 3 } Sau đó tìm n rồi xét xem với gtri nào của n thì A lớn hơn 0 là xog r đó bạn
17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

2 tháng 4 2017

Để B nguyên thì \(n+5⋮2n+3\)

Ta có \(2n+3⋮2n+3\)

=>\(2.\left(n+5\right)⋮2n+3\)

=>\(2n+10⋮2n+3\)

=>(2n+10)-(2n+3) \(⋮2n+3\)

=>\(7⋮2n+3\)

=> \(2n+3\in\left\{-7;-1;1;7\right\}\)

=> \(n\in\left\{-5;-2;-1;2\right\}\)

Thử lại ta thấy với n=-5 thì B=0, loại

Với n=-2 thì B<0

Còn lại đều cho B là dương

Vậy \(n\in\left\{-1;2\right\}\)