chotam giác ABC cân tại A(góc A khác 90độ) dg cao BD và CE (D thuộc AC,E thuộc AB ).Vẽ Bx vuông AB Tia Bx cắt AC tại I .cm :
a)ED//BC
b)AC^2=AE.AI
c)góc DBC=góc CBI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆ ( cùng phụ với BKCˆ ) ( 1 )
HCBˆ+HBCˆ=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800
Hay : HCAˆ+HBAˆ=1800
mà : HBxˆ+HBAˆ=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)
mà : HBCˆ=HBxˆ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a) Xét 2 tam giác vuông \(\Delta EBC\) và \(\Delta DCB\) có:
\(BC\) chung
\(\widehat{EBC}=\widehat{DCB}\) (gt)
suy ra: \(\Delta EBC=\Delta DCB\)
\(\Rightarrow\)\(EB=DC\)
mà \(AB=AC\)
\(\Rightarrow\)\(\frac{EB}{AB}=\frac{DC}{AC}\)
hay \(ED//BC\)