K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

10 tháng 1 2021

\(f\left(x\right)=ax^2+bx+c\)

=> \(f\left(-2\right)=4a-2b+c=-3\)

Có f(x) chia cho x và x + 4 đều dư 5

=> \(\left\{{}\begin{matrix}f\left(0\right)=0+c=5\\f\left(-4\right)=16a-4b+c=5\end{matrix}\right.\)

Ta có hpt:

\(\left\{{}\begin{matrix}4a-2b+c=-3\\c=5\\16a-4b+c=5\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}c=5\\2\left(2a-b\right)=-8\\4\left(4a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=4a\\2a-b=-4\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=5\end{matrix}\right.\)

Khi đó \(f\left(x\right)=2x^2+8x+5\)

 

1 tháng 11 2020

Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)

Áp dụng định lý Bezout ta có:

\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)

\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)

\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)

\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)

\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)

\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)

Từ (2) và (3)

\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)

\(\Leftrightarrow10a-3b-6a+3b=24\)

\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)

Thay \(a=6\)vào (1) ta có:

\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)

Vậy \(a=6\)và \(b=11\)

22 tháng 7 2020

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b

theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)

cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)

từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0

vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)

22 tháng 7 2020

+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)

+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)

\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)

+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)

+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)

+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

Vậy a=0, b=1/2

P/s: Bài này mình không chắc chắn lắm nhé!

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Số mũ cao nhất của hàm số là 2, suy ra biểu thức\(f\left( x \right)\)đã cho là đa thức bậc hai

b) Thay \(x = 2\) vào \(f\left( x \right)\) ta có:

\(f\left( 2 \right) =  - {2^2} + 2 + 3 = 1 > 0\)

Suy ra \(f\left( 2 \right)\) dương.