K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Câu 1 nè:Phương trình trình trên có 2 nghiệm phân biệt khi ∆>0 tức là (2m-1)²-8(m-1) =(2m-3)² >0 <=>m khác 2/3 
Từ đó ta tính đc 
x1=-1/2 
x2=1-m hoặc x1=1-m,x2=-1/2 
bạn thay vào 
3x1-4x2=11 là tìm ra m,chú ý xét cả 2 trường hợp,nếu tìm ra m=3/2 thì loại. 

13 tháng 5 2019

Phương trình đã cho có nghiệm khi  ∆ ' = 1 - m ≥ 0 ⇔ m ≤ 1 .

Theo định lí Vi-ét, ta có: x 1 + x 2 = - 2 x 1 x 2 = m .

Kết hợp với điều kiện của bài toán 3 x 1 + 2 x 2 = 1  ta có hệ phương trình:

x 1 + x 2 = - 2 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = - 7

Do đó,x1.x2 = - 35= m (thỏa mãn m ≤ 1 ).

Chọn D.

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

24 tháng 8 2017

Chọn C

18 tháng 4 2017

Giải:

Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)

Từ đó suy ra \(m\ne1,5\left(1\right)\)

Mặt khác, theo định lý Viet và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)

Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\) 

Ta được \(m=-2\) và \(m=4,125\left(2\right)\)

Đối chiếu điều kiện  \(\left(1\right)\)  và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt