K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

[[3x-3]+2x(-1)2016]=3x-2017 mũ 0

<=>3x-3+2x+1=3x-1

<=>-3+2x+1=1

<=>-2+2x=1

<=>2x=2-1

<=>2x=1

<=>x=1/2

2,p=3 bạn nhé

2 tháng 4 2018

1. SAi đề!

2.

\(\text{Ta xét 3 trường hợp:}\)

\(Th1:p=2\text{ ta có:}\)

\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)

\(Th2:p=3\text{ ta có:}\)

\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)

\(Th3:p>3\text{ ta có:}\)

\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)

\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)

\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)

\(\text{Từ (1) và (2) ta có:}\)

\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)

\(\text{Vậy p=3 thỏa mãn đề bài}\)

5 tháng 2 2022

Xét p=2

⇒ \(2^2+2^2=4+4=8\left(L\right)\)

Xét p=3

⇒ \(2^3+3^2=8+9=17\left(TM\right)\)

Xét p>3

⇒ p+ 2= (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.

Do đó:  2p+p2là hợp số (L)

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

5 tháng 2 2022
NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

10 tháng 8 2023

Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
 mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)

1:

a: =>7(x+1)=72-16=56

=>x+1=8

=>x=7

b: (2x-1)^3=4^12:16=4^10

=>\(2x-1=\sqrt[3]{4^{10}}\)

=>\(2x=1+\sqrt[3]{4^{10}}\)

=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)

c: \(\Leftrightarrow6x-2+7⋮3x-1\)

=>3x-1 thuộc Ư(7)

mà x là số tự nhiên

nên 3x-1 thuộc {-1}

=>x=0

d: x^2+7 chia hết cho 2x^2+1

=>2x^2+14 chia hết cho 2x^2+1

=>2x^2+1+13 chia hết cho 2x^2+1

=>2x^2+1 thuộc Ư(13)

=>2x^2+1=1(Vì x là số tự nhiên)

=>x=0

10 tháng 8 2023

What, e mới lớp 6 mà căn bậc gì đây rồii