K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

áp dụng tam bậc thức

đa thức cao hơn 2

biểu thức là 1 phân thức

có thể lm bài đc đó

5 tháng 4 2018

áp dụng tam bậc thức

đa thức cao hơn 2

biểu thức là 1 phân thức

có thể lm bài đc đó


 

NV
28 tháng 3 2023

\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)

\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)

\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

26 tháng 2 2018

2. Có hai cách nhé

Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36 
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36 
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6) 
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3] 
--> P = [x(x - 2) + 3].[y(y + 6) + 12] 
--> P = (x² - 2x + 3)(y² + 6y + 12) 
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0 

Dấu " = " xảy ra ⇔ x = 1 ; y = -3 
Vậy MinP = 6 ⇔ x = 1 ; y = -3 

Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36 
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9 
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9 
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9 
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9 
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9 
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9 
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6 

Dấu " = " xảy ra ⇔ x = 1 ; y = -3 
Vậy MinP = 6 ⇔ x = 1 ; y = -3 

P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R 
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

26 tháng 2 2018

Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)    (*)

\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)   (**)

Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)

\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)

Vậy bất đẳng thức  (**) đúng hay bất đẳng thức (*) đúng

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

16 tháng 1 2020

\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)

\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge x+y+\frac{3}{x+y}\)

\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)

\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)

Tại \(x=y=\frac{2}{3}\)