K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

\(\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{1-x^2}\)

\(\frac{1-x+x+1}{1-x^2}=\frac{3x-6}{1-x^2}\)

\(2=3x-6\)

\(4=3x\)

\(x=\frac{4}{3}\)

1 tháng 4 2018

\(\frac{1}{x+1}-\frac{1}{x-1}=\frac{3x-6}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{\left(1-x\right)\left(x+1\right)}\)

Quy đồng rồi khử mẫu ta được:

\(1-x+x+1=3x-6\)

\(\Leftrightarrow-x+x-3x=-6-1-1\)

\(\Leftrightarrow-3x=-8\)

\(\Leftrightarrow x=\frac{8}{3}\)

Vậy  .... 

8 tháng 4 2019

\(\frac{1}{2-x}+1=\frac{1}{x+2}-\frac{6-x}{3x^2-12}\)ĐKXĐ : \(x\ne\pm2\)

\(\Leftrightarrow\frac{-3\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}+\frac{x-6}{3\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{-3x-6+3\left(x^2-4\right)}{3\left(x-2\right)\left(x+2\right)}-\frac{3x-6+x-6}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{-3x-6+3x^2-12-3x+6-x+6}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{-7x-6+3x^2}{3\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow3x^2-7x-6=0\)

\(\Leftrightarrow3x^2-9x+2x-6=0\)

\(\Leftrightarrow3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-2}{3}\end{cases}}\)( thỏa mãn )

Vậy....

20 tháng 2 2018

\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{2x+3}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{x+2}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{2}{\frac{2x+3+x+2}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{2}{\frac{3x+5}{2x+3}}=\frac{6}{3x-1}\)

\(\frac{4x+6}{3x+5}=\frac{6}{3x-1}\)

\(\Rightarrow\left(4x+6\right)\left(3x-1\right)=6\left(3x+5\right)\)

\(\Rightarrow12x^2-4x+18x-6=18x+30\)

\(\Rightarrow12x^2-4x+18x-18x=30+6\)

\(\Rightarrow12x^2-4x-36=0\)

\(\Rightarrow3x^2-x-9=0\)

\(\Rightarrow x^2-\frac{1}{3}x-3=0\)

\(\Rightarrow x^2-2.\frac{1}{6}x+\frac{1}{36}-\frac{1}{36}-3=0\)

\(\Rightarrow\left(x-\frac{1}{6}\right)^2-\frac{109}{36}=0\)

\(\Rightarrow\left(x-\frac{1}{6}-\frac{\sqrt{109}}{6}\right)\left(x-\frac{1}{6}+\frac{\sqrt{109}}{6}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{109}}{6}\\x=\frac{1-\sqrt{109}}{6}\end{cases}}\)

20 tháng 2 2018

làm lại nhé, chỗ kia quy đồng sai 

lần này làm theo cách khác

\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x+2}}}=\frac{6}{3x-1}\)

\(\frac{2}{x+\frac{1}{\frac{x+2+x+1}{x+2}}}=\frac{2}{x-\frac{1}{3}}\)

\(\Rightarrow x+\frac{1}{\frac{2x+3}{x+2}}=x-\frac{1}{3}\)

\(\Rightarrow\frac{x+2}{2x+3}=\frac{-1}{3}\)

\(\Rightarrow\left(x+2\right).3=-1.\left(2x+3\right)\)

\(\Rightarrow3x+6=-2x-3\)

\(\Rightarrow3x+2x=-3-6\)

\(\Rightarrow5x=-9\)

\(\Rightarrow x=\frac{-9}{5}\)

vậy \(x=\frac{-9}{5}\)

18 tháng 2 2017

đề sai òi                                              

13 tháng 6 2020

\(\frac{1}{x-1}+\frac{6}{3x+5}=\frac{2}{x+2}+\frac{1}{x+3}\)

\(\Leftrightarrow\frac{3x+5+6x-6}{3x^2+2x-5}=\frac{2x+6+x+2}{x^2+5x+6}\)

\(\Leftrightarrow\frac{9x-1}{3x^2+2x-5}=\frac{3x+8}{x^2+5x+6}\)

\(\Rightarrow9x^3+44x^2+49x-6=9x^3+30x^2+x-40\)

\(\Leftrightarrow14x^2-48x+34=0\)

\(\Rightarrow14x^2-14x-34x+34=0\)

\(\Rightarrow\left(x-1\right)\left(14x-34\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\14x-34=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{17}{7}\end{cases}}}\)

Ngu nên làm dài dòng thôi

28 tháng 7 2017

\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+...+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{x-5-x+1}{\left(x-1\right)\left(x-5\right)}=\frac{1}{8}\)

\(\Leftrightarrow-4.8=x^2-6x+5\)

\(\Leftrightarrow x^2-6x+37=0\)

3 tháng 1 2018

bo tay

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

28 tháng 3 2022

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)