Tìm n để phân số sau là phân số tối giản :
\(\frac{3n+2}{7n+1}\)
Cần gấp ! Giải đầy đủ và chính xác nhé :^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ƯCLN (n+1;2n+5)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+5\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)
Mà 2n+2 ko chia hết cho 3
=>d=1
Vậy......
b)Gọi d là ƯCLN(2n+3;2n+8)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 ko chia hết cho 2
\(\Rightarrow d=1\)
Vậy.......
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
=> 2n+3 cà 4n+1 có ước chung là 1
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
Để phân số\(\frac{3n+2}{7n+1}\)là phân số tối giản thì ƯCLN (3n + 2; 7n + 1) = 1
Bg (11)
Gọi a là ƯCLN (3n + 2; 7n + 1) (a \(\inℕ^∗\))
=> 3n + 2 \(⋮\)a và 7n + 1 \(⋮\)a
=> 7(3n + 2) - 3(7n + 1) = 11 \(⋮\)a
=> a \(\in\)Ư (11)
Ư (11) = {1; 11)
Xét a = 11
=> 3n + 2 \(⋮\)11 và 7n + 1 \(⋮\)11
=> 7n + 1 - 2(3n + 2) = n - 3 \(⋮\)11
=> n = 11k + 3 (k \(\inℕ\))
Mà a phải = 1 nên n \(\ne\)11k + 3
=> n = 11k; n = 11k + 1; n = 11k + 2; n = 11k + 4; n = 11k + 5; n = 11k + 6; n = 11k + 7; n = 11k + 8; n = 11k + 9; n = 11k + 10.
Trong đời ai cũng sẽ có lúc sai...
gọi d là ước nguyên tố chung của 3n + 2 và 7n + 1
ta có : 3n + 2 chia hết cho d ; 7n + 1 chia hết cho d
=> 7( 3n + 2) chia hết cho d ; 3( 7n + 1) chia hết cho d
=> ( 21n + 14) - ( 21n + 3) chia hết cho d
=> 11 chia hết cho d
=> d = 11
ta có : 3n + 2 chia hết cho 11
=> 3n + 11 - 9 chia hết cho 11
=> 3n - 9 : hết cho 11
=> 3n ko chia hết cho 11
vì ( 3 ; 11) = 1
=> n ko chia hết cho 11
=> n ∈11k => p/s tối giản
gọi d là ước chung của 3n + 2 và 7n + 1
\(\Rightarrow\)3n + 2 \(⋮\)d \(\Rightarrow\)7\((\)3n + 2\()\)\(⋮\)d
7n + 1\(⋮\)d\(\Rightarrow\)3\((\)7n + 1\()\)\(⋮\)d
21n + 14 - 21n + 3 \(⋮\)d
\(\Leftrightarrow\)9 \(⋮\)d . do d\(\in\)Ư của số lẻ 3n + 2 \(\Rightarrow\)d = \(\pm\)9
ta có:
\(A=\frac{2n+7}{n+2}=\frac{2.\left(n+2\right)+3}{n+2}\)
\(=\frac{2.\left(n+2\right)}{n+2}+\frac{3}{n+2}\)
\(=2+\frac{3}{n+2}\)
Để A là phân số tối giản thì \(2+\frac{3}{n+2}\)tối giản.
=> \(\frac{3}{n+2}\)tối giản
vậy \(3⋮n+2\)
Vậy \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
ĐÚNG 100%
Bn ấn vào câu hỏi tương tự có đáp án nhé ! ^^