K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Em tham khảo nhé!

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

12 tháng 3 2017

mình 0 bt nhng ai chat nhìu thì kt bn với mình nha

13 tháng 3 2017

c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx                       

-Chứng minh được góc  BAD vuông, CD = AC, AD = 2CC’                 

 ta có: BD BC + CD                                            

-BAD vuông tại A nên: AB2+AD2 = BD2                                                 

     AB+ AD2 >=   (BC+CD)2                                                                

        AB+ 4CC’2 >= (BC+AC)2

                  4CC’2  >=(BC+AC)– AB2                                                                     

Tương tự:  4AA’2 >= (AB+AC)– BC2

                  4BB’2   (AB+BC)– AC                                                     

 4(AA’+ BB’+ CC’2)>=  (AB+BC+AC)2                                                                    

                              

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

18 tháng 7 2021

aa',bb',cc' chắc là đường cao à bạn

 

mình nhầm xíu mình chỉnh rồi đó bạn giúp mình với 

 

15 tháng 5 2019

A B C D H E F

Gộp a) + b) lại cho dễ làm:

Xét hai tam giác ABE và tam giác ACF:

Ta thấy rằng: \(\widehat{BEA}=\widehat{CFA}\)

Mà: \(\widehat{BEA}+\widehat{BAC}+\widehat{ABE}=180^o\Rightarrow\widehat{ABE}=180^o-\widehat{BEA}-\widehat{BAC}\) (tổng ba góc trong tam giác)

\(\widehat{CFA}+\widehat{BAC}+\widehat{ACF}=180^o\Rightarrow\widehat{ACF}=180^o-\widehat{CFA}-\widehat{BAC}=180^o-\widehat{BEA}-\widehat{BAC}=\widehat{ABE}\)

Từ đây,ta có: \(\widehat{ACF}=\widehat{ABE}\).Từ đây kết hợp giả thiết góc ABC > góc ACB suy ra:  \(\widehat{ABC}-\widehat{ABE}>\widehat{ACB}-\widehat{ACF}\)

Hay góc EBC > góc FCB . Đầu tiên,ta dễ c/m B,H,E thẳng hàng ,do BE là đường cao xuất phát từ đỉnh B.Lại thấy rằng H là giao điểm của 2 đường cao nên đường cao còn lại cũng đi qua nó.Do vậy H là trực tâm)Ta sẽ c/m C,H, F thẳng hàng để suy ra EBC = HBC > FCB = HCB tức là góc HBC > góc HCB.Để từ đó theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB

(mai mình hướng dẫn tiếp,buồn ngủ quá!)

16 tháng 5 2019

Chứng minh tiếp từ chỗ c/m C, H, F thẳng hàng nhé: (không chắc lắm đâu,mình dốt hình)

Ta có: H là giao điểm của hai đường cao  nên đường cao còn lại cũng đi qua H hay H là trực tâm.

Lại có: CH là đoạn thẳng xuất phát từ C đến trực tâm H nên thuộc đường cao xuất phát từ C. (1)

HF là đoạn thẳng hạ từ trực tâm H vuông góc với AB nên thuộc đường cao xuất phát từ C  (2)

Từ (1) và (2) suy ra C, H, F thẳng hàng   (3)

Từ đây suy ra \(\widehat{EBC}=\widehat{HBC}>\widehat{FCB}=\widehat{HCB}\)

Hay \(\widehat{HBC}>\widehat{HCB}\) vậy theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB

b) Theo kết quả của (3) (ở câu a) ta có C, H, F thẳng hàng.

c)Theo giả thiết ở câu a) ta có: \(\widehat{ABC}>\widehat{ACB}\).Theo quan hệ giữa góc và cạnh đối diện của tam giác ABC suy ra AC > AB

Suy ra  AC + AB > AB + AB = 2AB (4).

Lại có: Tam giác ABD vuông tại D (giả thiết AD là đường cao hạ từ A vuông góc với BC). Do đó AB là cạnh lớn nhất.

Suy ra AB > AD suy ra 2AB > 2AD (5)

Từ (4) và (5) kết hợp lại,ta có: AC + AB > 2AB > 2AD tức là AC + AB > 2AD.

d) Đang suy nghĩ...