cho tam giác ABC, đường trung tuyến BD. Trên tia đối của BD lấy E sao cho DE=DB. Gọi M, N lần lượt là trung điểm của BC và EC. Gọi P, Q lần lượt là giao điểm của AM, AN với BE. CMR BP=PQ=QE2cho tam giác ABC, đường trung tuyến BD. Trên tia đối của BD lấy E sao cho DE=DB. Gọi M, N lần lượt là trung điểm của BC và EC. Gọi P, Q lần lượt là giao điểm của AM, AN với BE. CMR BP=PQ=QE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AM và BD là hai trung tuyến của tam giác ABC cắt nhau tại I nên I là trọng tâm của tam giác ABC, ta có:
Ta có K là trọng tâm tam giác ACE nên (2)
Mà BD = DE từ (1) và (2) suy ra BI = EK (3) . Mặt khác, ta lại có: và suy ra ID = KD ( do BD = ED ) nên (4). Từ (3) và (4) suy ra BI = IK = KE.
tích nha
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
=> tam giác OBC vuông tại O=> BD_|_CE tại O
1.gọi giao của BD và CE là O
ta có: OB=2/3 BD=> OB=2/3 x 9=6
ta có: OC=2/3 EC=> OC=2/3 x12=8
ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100
$BC^2=10^2=100$BC2=102=100
=> tam giác OBC vuông tại O=> BD_|_CE tại O
ta có BD=ED(gt)
\(\Rightarrow\frac{2}{3}BD=\frac{2}{3}ED\Rightarrow BI=ED\left(1\right)\)
\(BD=ED\Rightarrow\frac{1}{3}BD=\frac{1}{3}ED\Rightarrow ID=DK\)
lại có:\(DE=\frac{1}{3}DE+\frac{1}{3}DE+\frac{1}{3}DE\)
\(\Rightarrow\frac{2}{3}DE=DK+ID\left(DK=ID\right)\)
\(\Rightarrow KE=IK\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow BI=IK=KE\)