K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>AM=1/2MC

c: Gọi giao của d với AC là E

d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC

Xét ΔCAD có

E là trung điểm của CA

EQ//DA

=>Q là trung điểm của CD

Xét ΔCBD có

M là trọng tâm

BQ là đường trung tuyến

Do đó; B,Q,M thẳng hàng

a) Xét ∆ABC có : .

AM là trung tuyến 

=> ∆ABC cân tại A , trung tuyến AM vừa là trung trực vừa là phân giác 

b) Vì AM là trung trực ∆ABC 

=> AMC = 90° 

Xét ∆BDC có : 

DM là trung tuyến 

=> ∆BDC cân tại D , trung tuyến DM là trung trực và là phân giác 

=> DMC = 90° 

Ta có : 

AMD = AMC + DMC 

AMD = 90° + 90° = 180° 

=> AMD là góc bẹt 

=> A, M , D thẳng hàng

13 tháng 12 2021

a, vì ab =ac (gt)

=> abc là tam giác cân tại a

vì tam giác abc cân tại a

=> góc b = góc c

vì m là trung điểm bc

=> bm = mc

xét tam giác amb và tam giác amc có

bm =mc

góc b = góc c

ab = ac

=> tam giác amb = tam giác amc (cgc)

 

13 tháng 12 2021

b, vì 2 tam giác chứng minh ở câu a bằng sau

=> bam = cam( cặp góc tương ứng)

=> am là tia p/g của bac

a: Sửa đề; ΔMAB=ΔMDC

Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>AB//CD và AB=CD<AC

=>góc CAD<góc CDA

=>góc CAD<góc BAM

 

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm