K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

a) Trong tg ABC có góc C<A=> AB<BC( quan hệ giữa góc và cạnh đối diện trong 1 tg)

4 tháng 12 2015

BÀI 1 : Ta có tam giác ABC có góc B=góc C=>tam giác ABC cân tại A =>AB=AC

BÀI 2:TA có:tam giác ABC có AB=AC=>Tam giác ABC cân tại A mak koa góc A = 6O độ =>tam giác ABC đều=>AB=AC=BC

                          TICK NHA, MK GIẢI CHI TIẾT LẮM RÙI ĐÓ

 

18 tháng 6 2017

Bài 1:

1. Ta có ^B+^C=1800-1000=800. => ^C=[(^B+^C)-(^B-^C)]/2 =(800-500)/2=15=> ^B=150+500=650.

2. ^A+^C=1800-^B=1800-800=100

3^A=2^C => ^A/2=^C/3 = (^A+^C)/2+3 (Dãy tỉ số bằng nhau)

=(^A+^C)/5=1000/5=200 => ^A=200.2=400;  ^C=200.3=600.

Bài 2: 

Gọi góc ngoài đỉnh C của tam giác ABC là ^ACy => ^Cx là phân giác ^ACy

=> ^ACx=^xCy=^ACy/2=1200/2=600

^A=600 => ^ACy=^A=600. Mà 2 góc này so le trong => Cx//AB.

M A C B N K I 1 2 1 2 3 4 1 2 60 0

Xét \(\Delta ABC\)có:

\(\widehat{ABC}+\widehat{BCA}=180^0-60^0=120^0\)

mÀ \(\widehat{B_1}=\widehat{B_2}\)(TIA pg)

\(\widehat{C_1}=\widehat{C_2}\left(pg\right)\)

\(\Rightarrow\widehat{B_2}+\widehat{C_2}=\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=60^0\)

\(\Rightarrow\widehat{BIC}=120^0\)

Kẻ IK là pg \(\widehat{BIC}\)

\(\Rightarrow\widehat{I_2}=\widehat{I_3}\left(=60^0\right)\)

T a có: \(\widehat{I_4}=\widehat{I_1}=180^0-\widehat{BIC}=60^0\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\widehat{I_3}=\widehat{I_4}\left(=60^0\right)\)

Xét tam giác BNI=tam giác BKI(g.c.g) có:

BN=BK(2 cạnh t/ư)

Tương tự ta c/m đc  tam giác IKC= tam giác IMC(g.c.g)

=>CK=CM(2 cạnh t/ư)

Lại có: BK+KC=BC

mÀ BN=BK;CK=CM

=>BN+MC=BC(đpcm)

22 tháng 8 2019

Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!

C/m:

Từ giả thiết ta có:

\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\)                 \(\left(.\right)\)

\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)

\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)

Giả sử \(MA\ne MB\)ta xét 2 trường hợp:

T/ hợp 1\(MA< MB\)

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)

22 tháng 8 2019

Nối MA.

Để chứng minh MA =MB. Ta dùng phản chứng.

G/s: \(MA\ne MB\)

Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)

Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)

Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)

+) TH1: MA> MB=MC

Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)

Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)

+) TH1: MA< MB=MC

Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)

Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)

=> Điều giả sử là sai

=> MA=MB

25 tháng 8 2021

a) Xét tam giác ABC có ˆB+ˆC=60o⇒BAC=120oB^+C^=60o⇒BAC=120o

Do AD là phân giác nên ˆBAD=ˆCAD=60oBAD^=CAD^=60o

ˆMABMAB^ và ˆBACBAC^ là hai góc kề bù nên ˆMAB=180o−120o=60oMAB^=180o−120o=60o

Vậy thì ΔMAB=ΔOAB(g−c−g)ΔMAB=ΔOAB(g−c−g)

⇒AM=AO⇒AM=AO

Hoàn toàn tương tự ta có AN = AO

Vậy nên AM = AN.

b) Ta có do ΔMAB=ΔOAB⇒AM=AO;BM=BOΔMAB=ΔOAB⇒AM=AO;BM=BO

Suy ra AB là trung trực của MO,.

Lại có N thuộc AB nên NM = NO

Hoàn toàn tương tự ta có MO = MN

Vậy OM = ON = MN hay OMN là tam giác đều. 

25 tháng 8 2021

undefinedTa có: △ABC có góc B+góc C=60 độ 

                                                             ➩góc BAC =120 độ

                                                              ta có AD là phân giác

                                                              góc BAC=>BAD=CAD=\(\dfrac{1}{2}\)BAC=60 độ

                                                           △ABO và ΔABM có góc BAO= BAM=60 độ

                                                             AB chung

                                                             góc ABM =ABO

                                                              ➩tam giác ABO =tam giác ABM (g.c.g)

                                                              ➝AM=AO (*)

                                                              Ta chứng minh tương tự như trên:

                                                              tam giác ACO= tam giác ACN (g.c.g)

                                                              ➝AN=AO(**)

                                                               Từ (*)(**) ⇒AM=AN (đpcm)