cm neu x;y;z\(\supset0\)t/m \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)thi
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\subseteq1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\Leftrightarrow\frac{1}{x}+\frac{1}{y}=2015-\frac{1}{z}=\frac{z-2015}{2015z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-2015}{2015z}\Leftrightarrow2015z\left(x+y\right)=xy\left(z-2015\right)\)
\(2015z\left(2015-z\right)+\left(2015-z\right)xy=0\Leftrightarrow\left(2015-z\right)\left(2015z+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015\left(2015-x-y\right)+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015^2-2015x-2015y+xy\right)=0\)
\(\Leftrightarrow\left(2015-z\right)\left(2015-y\right)\left(2015-x\right)=0\)
vậy trong 3 số sẽ có 1 số là 2015
nguyen thi thu thuy copy ac nhi?con doi tick nua chu!!!du sao cung thong minh nen tuj tick cho :V
Giả sử a3 + b3 + c3 = 3abc, ta có :
a3 + b3 + c3 - 3abc = 0
Đưa về hằng đẳng thức mở rộng a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0
Mà a + b + c = 0
=> 0.(a2 + b2 + c2 - ab - bc - ca) = 0 (đúng)
Vậy , với a + b + c = 0 thì
a3 + b3 + c3 = 3abc