K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) P(x) = 5x5 - 4x2 + 7x + 15

Q(x) = 5x5 - 4x2 + 3x + 8

b) Có: P(x) - Q(x) = 4x + 7

P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)

8 tháng 3 2023

`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`

`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`

`=5x^5 -4x^2 +7x+15`

`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`

`=(4x^5+x^5) +(-2x^2  -2x^2)+3x+8`

`= 5x^5 - 4x^2 +3x+8`

`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`

`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`

`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`

`= 0 + 0 +4x + 7`

`=4x+7`

– Thu gọn và sắp xếp được:

P(x) =  5x5 – 4x2 + 7x + 15

Q(x) =  5x5 – 4x2 + 3x  + 8

 

0,5 đ

0,5 đ

b– Tính được:

P(x) – Q(x) = (5x5 – 4x2 + 7x + 15) – (5x5 – 4x2 + 3x  + 8)

= (5x5 – 5x5) + (- 4x2 + 4x2) + (7x – 3x) + (15 – 8)

=  4x + 7

– Cho P(x) – Q(x) = 0 khi 4x + 7 = 0

4x    = -7

x    = -7/4

Vậy nghiệm của đa thức P(x) – Q(x) là x = -7/4

k cho mk nha

16 tháng 4 2021

j vậy

vừa hỏi vừa trả lời là sao

4 tháng 3 2022

a, \(P\left(x\right)=5x^5-4x^2+7x+1;Q\left(x\right)=5x^5-4x^2+3x+8\)

b, \(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c, \(P\left(x\right)=Q\left(x\right)\Rightarrow7x+1=3x+8\Leftrightarrow4x=7\Leftrightarrow x=\dfrac{7}{4}\)

4 tháng 3 2022

a/ \(P\left(x\right)=8x^5+7x-6x^2-3x^5+2x^2+1\)

\(=8x^5-3x^5-6x^2+2x^2+7x+1\)

\(=5x^5-4x^2+7x+1\)

\(Q\left(x\right)=4x^5+3x-2x^2+x^5-2x^2+8\)

\(=4x^5+x^5-2x^2-2x^2+3x+8\)

\(=5x^5-4x^2+3x+8\)

b/ \(P\left(x\right)=5x^5-4x^2+7x+1\)

+  \(Q\left(x\right)=5x^5-4x^2+3x+8\)

____________________________

\(P\left(x\right)+Q\left(x\right)=10x^5-8x^2+10x+9\)

c/ \(P\left(x\right)=Q\left(x\right)\)

\(\Rightarrow5x^5-4x^2+7x+1=5x^5-4x^2+3x+8\)

\(\Rightarrow7x+1=3x+8\)

\(\Rightarrow4x-7=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

19 tháng 4 2019

a) Phương trình bậc hai

2 x 2   –   7 x   +   3   =   0

Có: a = 2; b = -7; c = 3;

Δ   =   b 2   –   4 a c   =   ( - 7 ) 2   –   4 . 2 . 3   =   25   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là 3 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Phương trình bậc hai  6 x 2   +   x   +   5   =   0

Có a = 6; b = 1; c = 5; 

Δ   =   b 2   –   4 a c   =   12   –   4 . 5 . 6   =   - 119   <   0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai  6 x 2   +   x   –   5   =   0

Có a = 6; b = 1; c = -5;

Δ   =   b 2   –   4 a c   =   12   –   4 . 6 . ( - 5 )   =   121   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Phương trình bậc hai  3 x 2   +   5 x   +   2   =   0

Có a = 3; b = 5; c = 2;

Δ   =   b 2   –   4 a c   =   5 2   –   4 . 3 . 2   =   1   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) Phương trình bậc hai  y 2   –   8 y   +   16   =   0

Có a = 1; b = -8; c = 16;  Δ   =   b 2   –   4 a c   =   ( - 8 ) 2   –   4 . 1 . 16   =   0 .

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép y = 4.

f) Phương trình bậc hai  16 z 2   +   24 z   +   9   =   0

Có a = 16; b = 24; c = 9;  Δ   =   b 2   –   4 a c   =   24 2   –   4 . 16 . 9   =   0

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

7 tháng 5 2022

Cho `P(x)=0`

`=>6x^2-7x-3=0`

`=>6x^2+2x-9x-3=0`

`=>2x(3x+1)-3(3x+1)=0`

`=>(3x+1)(2x-3)=0`

`=>` $\left[\begin{matrix} 3x+1=0\\ 2x-3=0\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=\dfrac{-1}{3}\\ x=\dfrac{3}{2}\end{matrix}\right.$

Vậy đa thức có nghiệm `x = [-1]/3` hoặc `x=3/2`

7 tháng 5 2022

cho P(x) = 0

\(6x^2-7x-3=0\)

\(\Leftrightarrow6x^2+2x-9x-3=0\)

\(\Leftrightarrow2x\left(3x+1\right)-3\left(3x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(3x+1\right)=0\)

\(=>\left[{}\begin{matrix}2x=3\\3x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

7 tháng 3 2023

\(\dfrac{3}{4}\times\dfrac{5}{7}=\dfrac{15}{28};\dfrac{5}{8}\times\dfrac{4}{15}=\dfrac{20}{120}=\dfrac{1}{6};\dfrac{7}{12}\times\dfrac{4}{9}=\dfrac{28}{108}=\dfrac{7}{27};\)

\(\dfrac{1}{6}\times\dfrac{3}{5}=\dfrac{3}{30}=\dfrac{1}{10};\dfrac{12}{21}\times\dfrac{23}{8}=\dfrac{276}{168}=\dfrac{23}{14};\dfrac{13}{4}\times\dfrac{5}{39}=\dfrac{65}{156}=\dfrac{5}{12}\)

\(\dfrac{7}{42}\times\dfrac{13}{21}=\dfrac{91}{882}=\dfrac{13}{126};\dfrac{3}{16}\times\dfrac{4}{15}=\dfrac{12}{240}=\dfrac{1}{20}\)

11 tháng 5 2022

dark dark bruh bruh lmao

26 tháng 6 2017

Đáp án C

Ta có y ' = 12 x 3 − 24 x 2 + 12 x = 12 x x − 1 2 .  

Suy ra y' đổi dấu 1 lần, suy ra hàm số có 1 cực trị.

5 tháng 10 2023

Bài 5

a) A = -x³ + 6x² - 12x + 8

= -x³ + 3.(-x)².2 - 3.x.2² + 2³

= (-x + 2)³

= (2 - x)³

Thay x = -28 vào A ta được:

A = [2 - (-28)]³

= 30³

= 27000

b) B = 8x³ + 12x² + 6x + 1

= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³

= (2x + 1)³

Thay x = 1/2 vào B ta được:

B = (2.1/2 + 1)³

= 2³

= 8

5 tháng 10 2023

Bài 6

a) 11³ - 1 = 11³ - 1³

= (11 - 1)(11² + 11.1 + 1²)

= 10.(121 + 11 + 1)

= 10.133

= 1330

b) Đặt B =  x³ - y³ = (x - y)(x² + xy + y²)

= (x - y)(x² - 2xy + y² + 3xy)

= (x - y)[(x - y)² + 3xy]

Thay x - y = 6 và xy = 9 vào B ta được:

B = 6.(6² + 3.9)

= 6.(36 + 27)

= 6.63

= 378

a: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-3\right)=0\)

\(\Leftrightarrow x^3-27-x^3+3x=0\)

\(\Leftrightarrow x=9\)

b: Ta có: \(8x^4+x=0\)

\(\Leftrightarrow x\left(8x^3+1\right)=0\)

\(\Leftrightarrow x\left(2x+1\right)\left(4x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)