Cho đa thức \(Q\left(x\right)=-x^{2016}+2015x-1\) có nghiệm âm không vì sao ?_?
Cần lắm một câu trả lời >.<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(Q\left(x\right)=-x^{2016}+2015x-1=0\)
=> \(-x^{2016}=-\left(2015x-1\right)\)
=> \(x^{2016}=2015x-1\)
Nếu x có nghiệm âm thì \(x^{2016}\ge0\)và \(2015x-1< 0\)(không hợp lí)
Vậy x ko có nghiệm âm
a) \(P\left(x\right)=0\Rightarrow x^{2016}-x^{2014}=0\Rightarrow x^{2014}\left(x^2-1\right)=0\)
TH1: \(x^{2014}=0\Rightarrow x=0\)
TH2: \(x^2-1=0\Rightarrow x=\pm1\)
Vậy \(P\left(x\right)\) có nghiệm là \(x=0,x=1,x=-1\)
b) Xét \(x< 0\)
Ta có: \(x^{2016}>0\Rightarrow-x^{2016}< 0\); \(2015x< 0\)
\(\Rightarrow Q\left(x\right)=-x^{2016}+2015x-1< 0\)
Vậy \(Q\left(x\right)\) không có nghiệm âm
a, Đặt \(P\left(x\right)=x^{2016}-x^{2014}=0\Leftrightarrow x^{2014}\left(x^2-1\right)=0\Leftrightarrow x=0;x=-1;x=1\)
a) Nghiệm bằng 1 nha: 1^2016-1^2014=1-1=0
b)Không có nghiệm âm còn vì sao thì đợi lhi bạn k đug cho mk xog thì mk giải thick cho nha!
x2016-x2014=0
x2014*(x2-1)=0
TH1:
x2014=0
x=0
TH2
x2-1=0
x2=1
x=1
k mình nha
Thôi làm đa thức B trước cho dễ làm:
Ta có \(B=\left(3x+1\right)^2-x\left(5x+2\right)+3\)
\(=\left(3x\right)^2+2.3.x+1+1^2-5x^2-2x+3\)
\(=9x^2+6x+1-5x^2-2x+3\)
\(=4x^2+4x+4\)
\(=4\left(x^2+x+1\right)\)
\(A=x^{2016}-x^{2013}+x^2+x+1\)
\(=x^{2013}\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^{2013}\left(x-1\right)\left(x^2+x+1^2\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\text{[}x^{2013}\left(x-1\right)+\text{1]}\)
\(=4\left(x^2+x+1\right)\text{[}\frac{x^{2013}\left(x-1\right)+1}{4}\text{]}\)
Rồi bạn làm các bước còn lại nhen :v
a) Ta có: P(x) = 0 khi 3 – 2x = 0
=>-2x = -3 => x = \(\dfrac{3}{2}\)
b) Q(x) =x2 +2 là đa thức không có nghiệm vì
x2 ≥ 0
2 > 0 (theo quy tắc nhân hai số hữu tỉ cùng dấu)
=>x2 + 2 > 0 với mọi x
Nên Q(x) không có nghiệm trong R
a) Ta có P(x) = 0 khi 3 – 2x = 0
b) Đa thức Q(x) không có nghiệm, bởi vì:
x2 ≥ 0 với mọi x thuộc R.
2 > 0
\(\Rightarrow\) Q(x) = x2 + 2 > 0 với mọi x thuộc R.
Do đó, không có giá trị x nào thuộc R để Q(x) = 0 hay đa thức Q(x) không có nghiệm.
a)\(x^2+7x+6\)
\(=x^2+6x+x+6\)
\(=x\left(x+6\right)+\left(x+6\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b)\(x^4+2016x^2+2015x+2016\)
\(=x^4+2016x^2+\left(2016x-x\right)+2016\)
\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
Bài 3:
Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)
Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)
\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)
\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)